Publications by authors named "Booms P"

Different tissue engineering techniques are used to support rapid vascularisation. A novel technique is the use of platelet-rich fibrin (PRF), an autologous source of growth factors. This study was the first to investigate the influence of PRF matrices, isolated following different centrifugation protocols, on human dermal vascular endothelial cells (ECs) in mono-culture and co-culture with human primary fibroblasts (HFs) as an in vitro model for tissue regeneration.

View Article and Find Full Text PDF

Large bone defects have always been a big challenge. The use of bone marrow mononuclear cells (BMCs) combined with an osteoconductive scaffold has been proved a good alternative for the treatment of large bone defects. Another autologous source for tissue engineering is platelet rich fibrin (PRF).

View Article and Find Full Text PDF

Vismodegib, an inhibitor of the Hedgehog signaling pathway, is an approved drug for monotherapy in locally advanced or metastatic basal cell carcinoma (BCC). Data on combined modality treatment by vismodegib and radiation therapy, however, are rare. In the present study, we examined the radiation sensitizing effects of vismodegib by analyzing viability, cell cycle distribution, cell death, DNA damage repair and clonogenic survival in three-dimensional cultures of a BCC and a head and neck squamous cell carcinoma (HNSCC) cell line.

View Article and Find Full Text PDF

The aim of the present study was the and analysis of a bi-layered 3D-printed scaffold combining a PLA layer and a biphasic PLA/bioglass G5 layer for regeneration of osteochondral defects Focus of the analysis was on the (molecular) weight loss and the morphological and mechanical variations after immersion in SBF. The study focused on analysis of the tissue reactions and differences in the implant bed vascularization using an established subcutaneous implantation model in CD-1 mice and established histological and histomorphometrical methods. Both scaffold parts kept their structural integrity, while changes in morphology were observed, especially for the PLA/G5 scaffold.

View Article and Find Full Text PDF

Platelet-rich fibrin (PRF) is generated from the patients' own venous blood by a single centrifugation step without the additional use of anticoagulants. Based on the previously described LSCC (low-speed centrifugation concept), our group showed that modification of the centrifugation setting, that is, reducing the relative centrifugal force (RCF) and mildly increasing the centrifugation time, resulted in modified solid and liquid PRF-matrices with increased number of platelets, leukocytes, and growth factors' concentrations. The aim of this study was to determine whether RCF reduction might also result in different tissue reactions toward the two PRF-based matrices, especially vascularization and cell distribution in vivo.

View Article and Find Full Text PDF

Platelet rich fibrin (PRF) is a blood concentrate system obtained by centrifugation of peripheral blood. First PRF matrices exhibited solid fibrin scaffold, more recently liquid PRF-based matrix was developed by reducing the relative centrifugation force and time. The aim of this study was to systematically evaluate the influence of RCF (relative centrifugal force) on cell types and growth factor release within injectable PRF- in the range of 60-966 g using consistent centrifugation time.

View Article and Find Full Text PDF

Background: . Missense variants in the ryanodine receptor 1 gene ( RYR1 ) are associated with malignant hyperthermia but only a minority of these have met the criteria for use in predictive DNA diagnosis. We examined the utility of a simplified method of segregation analysis and a functional assay for determining the pathogenicity of recurrent RYR1 variants associated with malignant hyperthermia.

View Article and Find Full Text PDF

Purpose The present study evaluated the platelet distribution pattern and growth factor release (VEGF, TGF-β1 and EGF) within three PRF (platelet-rich-fibrin) matrices (PRF, A-PRF and A-PRF+) that were prepared using different relative centrifugation forces (RCF) and centrifugation times. Materials and methods immunohistochemistry was conducted to assess the platelet distribution pattern within three PRF matrices. The growth factor release was measured over 10 days using ELISA.

View Article and Find Full Text PDF

In addition to macrophages, multinucleated giant cells (MNGCs) are involved in the tissue reaction to a variety of biomaterials. Especially in the case of bone substitute materials it has been assumed that the MNGCs are osteoclasts, based on the chemical and physical similarity of many materials to the calcified matrix and the bony environment in which they are used. However, many studies indicate that these cells belong to the cell line of the foreign body giant cells (FBGCs), which are of "inflammatory origin", although they have been shown to possess both a pro- and also anti-inflammatory phenotype.

View Article and Find Full Text PDF

The present study analyzes the influence of the addition of monocytes to a biphasic bone substitute with two granule sizes (400-700 μm and 500-1000 μm). The majority of the added monocytes was detectable as mononuclear cells, while also low amounts of (chimeric) multinucleated giant cells (MNGCs) were found. No increase in the total number of MNGCs was established, but a significantly increased percent vascularization.

View Article and Find Full Text PDF

With an aging population and the consequent increasing use of medical implants, managing the possible infections arising from implant surgery remains a global challenge. Here, we demonstrate for the first time that a precise nanotopology provides an effective intervention in bacterial cocolonization enabling the proliferation of eukaryotic cells on a substratum surface, preinfected by both live Gram-negative, Pseudomonas aeruginosa, and Gram-positive, Staphylococcus aureus, pathogenic bacteria. The topology of the model black silicon (bSi) substratum not only favors the proliferation of eukaryotic cells but is biocompatible, not triggering an inflammatory response in the host.

View Article and Find Full Text PDF

Background: Ameloblastoma although a benign odontogenic tumor, is locally invasive. The abundant presence of myofibroblasts (marked by α-smooth muscle actin [α-SMA]) in the stroma and expression of matrix metalloproteinase-2 (MMP-2) in the neoplastic or stromal cells have been linked with the tumor's ability for both local and distant spread. We aim to estimate the relative expression of α-SMA and MMP-2 in ameloblastoma from a black African subgroup to gauge their relative potential for enhancing local invasiveness and hence, their prospects as possible chemotherapeutic targets.

View Article and Find Full Text PDF

Vismodegib hedgehog signaling inhibition treatment has potential for reducing the burden of multiple skin basal cell carcinomas and jaw keratocystic odontogenic tumors. They are major criteria for the diagnosis of Gorlin syndrome, also called nevoid basal cell carcinoma syndrome. Clinical features of Gorlin syndrome are reported, and the relevance of hedgehog signaling pathway inhibition by oral vismodegib for maxillofacial surgeons is highlighted.

View Article and Find Full Text PDF

The present study investigated the influence of granule size of 2 biphasic bone substitutes (BoneCeramic® 400-700 μm and 500-1000 μm) on the induction of multinucleated giant cells (MNGCs) and implant bed vascularization in a subcutaneous implantation model in rats. Furthermore, degradation mechanisms and particle phagocytosis of both materials were examined by transmission electron microscopy (TEM). Both granule types induced tissue reactions involving primarily mononuclear cells and only small numbers of MNGCs.

View Article and Find Full Text PDF

Introduction: Ameloblastoma is a slow growing, painless odontogenic swelling which can attain sizes that result in severe deformities of the craniofacial complex. It is the most commonly encountered odontogenic tumor in Nigeria. Surgical intervention is currently the method of treatment; however identification of altered molecular pathways may inform chemotherapeutic potential.

View Article and Find Full Text PDF

In this study, the tissue reactions to 2 new porcine dermis-derived collagen membranes of different thickness were analyzed. The thicker material (Mucoderm) contained sporadically preexisting vessel skeletons and fatty islands. The thinner membrane (Collprotect) had a bilayered structure (porous and occlusive side) without any preexisting structures.

View Article and Find Full Text PDF

The present study analyzed the tissue reaction to 2 novel porcine-derived collagen materials: pericardium versus dermis. By means of the subcutaneous implantation model in mice, the tissue reactions were investigated at 5 time points: 3, 10, 15, 30, and 60 days after implantation. Histologic, histochemical, immunhistologic, and histomorphometric analysis methodologies were applied.

View Article and Find Full Text PDF

Choukroun's platelet-rich fibrin (PRF) is obtained from blood without adding anticoagulants. In this study, protocols for standard platelet-rich fibrin (S-PRF) (2700 rpm, 12 minutes) and advanced platelet-rich fibrin (A-PRF) (1500 rpm, 14 minutes) were compared to establish by histological cell detection and histomorphometrical measurement of cell distribution the effects of the centrifugal force (speed and time) on the distribution of cells relevant for wound healing and tissue regeneration. Immunohistochemistry for monocytes, T and B -lymphocytes, neutrophilic granulocytes, CD34-positive stem cells, and platelets was performed on clots produced from four different human donors.

View Article and Find Full Text PDF

In the present study, the structure of two allogeneic and three xenogeneic bone blocks, which are used in dental and orthopedic surgery, were histologically analyzed. The ultimate goal was to assess whether the components postulated by the manufacturer can be identified after applying conventional histological and histochemical staining techniques. Three samples of each material, i.

View Article and Find Full Text PDF

Successful cell-based tissue engineering requires a rapid and thorough vascularization in order to ensure long-term implant survival and tissue integration. The vascularization of a scaffold is a complex process, and is modulated by the presence of transplanted cells, exogenous and endogenous signaling proteins, and the host tissue reaction, among other influencing factors. This paper presents evidence for the significance of pre-seeded osteoblasts for the in vivo vascularization of a biodegradable scaffold.

View Article and Find Full Text PDF

The clinical suitability of a bone substitute material is determined by the ability to induce a tissue reaction specific to its composition. The aim of this in vivo study was to analyze the tissue reaction to a silica matrix-embedded, nanocrystalline hydroxyapatite bone substitute.The subcutaneous implantation model in Wistar rats was chosen to assess the effect of silica degradation on the vascularization of the biomaterial and its biodegradation within a time period of 6 months.

View Article and Find Full Text PDF

Background: Malignant hyperthermia (MH) is associated, in the majority of cases, with mutations in RYR1, the gene encoding the skeletal muscle ryanodine receptor. Our primary aim was to assess whether different RYR1 variants are associated with quantitative differences in MH phenotype.

Methods: The degree of in vitro pharmacological muscle contracture response and the baseline serum creatine kinase (CK) concentration were used to generate a series of quantitative phenotypes for MH.

View Article and Find Full Text PDF

In this study we present 3 families with malignant hyperthermia (MH), all of Indian subcontinent descent. One individual from each of these families was fully sequenced for RYR1 and presented with the non-synonymous change c.11315G>A/p.

View Article and Find Full Text PDF

Background: Tissue-specific monoallelic silencing of the RYR1 gene has been proposed as an explanation for variable penetrance of dominant RYR1 mutations in malignant hyperthermia (MH). We examined the hypothesis that monoallelic silencing could explain the inheritance of an MH discordant phenotype in some instances.

Methods: We analysed parent-offspring transmission data from MH kindreds to assess whether there was any deviation from the expected autosomal dominant Mendelian inheritance pattern.

View Article and Find Full Text PDF

This study represents a new approach to characterising patients at risk of malignant hyperthermia (MH) through the use of a recently published method for identifying high-risk haplotypes in candidate genes. We present analysis based upon the largest standardised and genotyped database of MH patients worldwide. We used unphased RYR1 SNP data directly to (1) assess RYR1 haplotype frequency differences between susceptible cases and control groups and (2) analyse population-based association via clustering of RYR1 haplotypes based on disease risk.

View Article and Find Full Text PDF