Carbon nanotubes (CNTs) are increasingly being used in industrial applications, but their toxicological data in animals and humans are still sparse. To assess the toxicological dose-response of CNTs and to evaluate their pulmonary biopersistence, their quantification in tissues, especially lungs, is crucial. There are currently no reference methods or reference materials for low levels of CNTs in organic matter.
View Article and Find Full Text PDFA lithium-ion battery is a rechargeable battery that uses the reversible reduction of lithium ions to store energy and is the predominant battery type in many industrial and consumer electronics. The lithium-ion batteries are essential to ensure they operate safely. We conducted an exposure assessment five days after a fire in a battery-testing facility.
View Article and Find Full Text PDFThe inhalation toxicity of carbon nanofibers (CNFs) is not clearly known due to relatively few related studies reported. An acute inhalation study and short-term inhalation study (5 days) were therefore conducted using Sprague-Dawley rats. In the acute inhalation study, the rats were grouped and exposed to a fresh air control or to low (0.
View Article and Find Full Text PDFAccording to recent research, indium nanoparticles (NPs) are more toxic than micro-sized particles. While cases of indium lung disease have been reported worldwide, very little research has been conducted on the occupational exposure to indium NPs. Recently, an indium-related lung disease was reported in Korea, a global powerhouse for display manufacturing.
View Article and Find Full Text PDFLung deposition and retention measurements are now required by the newly revised OECD inhalation toxicity testing guidelines 412 and 413 when evaluating the clearance and biopersistence of poorly soluble nanomaterials, such as multi-walled carbon nanotubes (MWCNTs). However, evaluating the lung deposition concentration is challenging with certain nanomaterials, such as carbon-based and iron-based nanomaterials, as it is difficult to differentiate them from endogenous elements. Therefore, the current 28-day inhalation toxicity study investigated the lung retention kinetics of tangled MWCNTs.
View Article and Find Full Text PDFGraphene oxides possess unique physicochemical properties with important potential applications in electronics, pharmaceuticals, and medicine. However, the toxicity following inhalation exposure to graphene oxide has not yet been clarified. Therefore, this study conducted a short-term graphene oxide inhalation toxicity analysis using a nose-only inhalation exposure system and male Sprague-Dawley rats.
View Article and Find Full Text PDFGraphene, a two-dimensional engineered nanomaterial, is now being used in many applications, such as electronics, biological engineering, filtration, lightweight and strong nanocomposite materials, and energy storage. However, there is a lack of information on the potential health effects of graphene in humans based on inhalation, the primary engineered nanomaterial exposure pathway in workplaces. Thus, an inhalation toxicology study of graphene was conducted using a nose-only inhalation system for 28 days (6 h/day and 5 days/week) with male Sprague-Dawley rats that were then allowed to recover for 1-, 28-, and 90-day post-exposure period.
View Article and Find Full Text PDFGraphene has recently been attracting increasing attention due to its unique electronic and chemical properties and many potential applications in such fields as semiconductors, energy storage, flexible electronics, biosensors and medical imaging. However, the toxicity of graphene in the case of human exposure has not yet been clarified. Thus, a 5-day repeated inhalation toxicity study of graphene was conducted using a nose-only inhalation system for male Sprague-Dawley rats.
View Article and Find Full Text PDF