Publications by authors named "Bonville P"

The development of rapid, sensitive, portable and inexpensive early diagnostic techniques is a real challenge in the fields of health, defense and in the environment. The current global pandemic has also shown the need for such tests. The World Health Organization has defined ASSURED criteria (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to end-users) that field diagnostic tests must fulfill, which proves the real need in terms of public health.

View Article and Find Full Text PDF

Inexpensive simple medical devices allowing fast and reliable counting of whole cells are of interest for diagnosis and treatment monitoring. Magnetic-based labs on a chip are one of the possibilities currently studied to address this issue. Giant magnetoresistance (GMR) sensors offer both great sensitivity and device integrability with microfluidics and electronics.

View Article and Find Full Text PDF

Assembly of nanoparticles into supracrystals provides a class of materials with interesting optical and magnetic properties. However, supracrystals are mostly obtained from hydrophobic particles and therefore cannot be manipulated in aqueous systems, limiting their range of applications. Here, we show that hydrophobic-shaped supracrystals self-assembled from 8.

View Article and Find Full Text PDF

We report on the physical properties of single crystalline EuRhSi3 and polycrystalline EuIrSi3, inferred from magnetization, electrical transport, heat capacity and (151)Eu Mössbauer spectroscopy. These previously known compounds crystallise in the tetragonal BaNiSn3-type structure. The single crystal magnetization in EuRhSi3 has a strongly anisotropic behaviour at 2 K with a spin-flop field of 13 T, and we present a model of these magnetic properties which allows the exchange constants to be determined.

View Article and Find Full Text PDF

We present detailed investigations on single crystals of quaternary EuRhAl4Si2 and EuIrAl4Si2. The two compounds order antiferromagnetically at TN1 = 11.7 and 14.

View Article and Find Full Text PDF

Here, it is shown that binary superlattices of Co/Ag nanocrystals with the same size, surface coating, differing by their type of crystallinity are governed by Co-Co magnetic interactions. By using 9 nm amorphous-phase Co nanocrystals and 4 nm polycrystalline Ag nanocrystals at 25 °C, triangle-shaped NaCl-type binary nanocrystal superlattices are produced driven by the entropic force, maximizing the packing density. By contrast, using ferromagnetic 9 nm single domain (hcp) Co nanocrystals instead of amorphous-phase Co, dodecagonal quasicrystalline order is obtained, together with less-packed phases such as the CoAg13 (NaZn13-type), CoAg (AuCu-type), and CoAg3 (AuCu3-type) structures.

View Article and Find Full Text PDF

Single crystals of EuNiGe3, crystallizing in the non-centrosymmetric BaNiSn3-type structure, were grown using In flux, enabling us to explore the anisotropic magnetic properties, which was not possible with previously reported polycrystalline samples. The EuNiGe3 single crystalline sample is found to order antiferromagnetically at 13.2 K, as revealed from the magnetic susceptibility, heat capacity and electrical resistivity data.

View Article and Find Full Text PDF

The dynamical magnetic correlations in Tb2Ti2O7 have been investigated using polarized inelastic neutron scattering. Dispersive excitations are observed, emerging from pinch points in reciprocal space and characterized by an anisotropic spectral weight. Anomalies in the crystal field and phonon excitation spectrum at Brillouin zone centers are also reported.

View Article and Find Full Text PDF

We present a model which accounts for the high-field magnetization at very low temperature in the frustrated pyrochlore compound Er2Ti2O7. In Er2Ti2O7, the Er(3+) ion has a planar crystal field anisotropy and the material undergoes a transition to antiferromagnetism at TN = 1.2 K.

View Article and Find Full Text PDF

The vanadium oxyfluoride [NH(4)](2)[C(7)H(14)N][V(7)O(6)F(18)] (DQVOF) is a geometrically frustrated magnetic bilayer material. The structure consists of S = 1/2 kagome planes of V(4+) d(1) ions with S = 1 V(3+) d(2) ions located between the kagome layers. Muon spin relaxation measurements demonstrate the absence of spin freezing down to 40 mK despite an energy scale of 60 K for antiferromagnetic exchange interactions.

View Article and Find Full Text PDF

From magnetic, specific heat, (170)Yb Mössbauer effect, neutron diffraction, and muon spin relaxation measurements on polycrystalline Yb(2)Sn(2)O(7), we show that below the first order transition at 0.15 K all of the Yb(3+) ions are long-range magnetically ordered and each has a moment of 1.1 μ(B) which lies at ≃ 10° to a common fourfold cubic axis.

View Article and Find Full Text PDF

We present local probe results on the honeycomb lattice antiferromagnet Ba(3)CuSb(2)O(9). Muon spin relaxation measurements in a zero field down to 20 mK show unequivocally that there is a total absence of spin freezing in the ground state. Sb NMR measurements allow us to track the intrinsic susceptibility of the lattice, which shows a maximum at around 55 K and drops to zero in the low-temperature limit.

View Article and Find Full Text PDF

Uniform magnetic nanoneedles have been prepared by hydrogen reduction of elongated nanoarchitectures. These precursors are as-prepared or cobalt-coated aggregates of highly oriented haematite nanocrystals (∼5 nm). The final materials are flattened nanoneedles formed by chains of assembled Fe or FeCo single-domain nanocrystals.

View Article and Find Full Text PDF

The magnetic properties of single crystalline EuPtGe(3), crystallizing in the non-centrosymmetric BaNiSn(3)-type crystal structure, have been studied by means of magnetization, electrical resistivity, heat capacity and (151)Eu Mössbauer spectroscopy. The susceptibility and heat capacity data indicate a magnetic transition at T(N) = 11 K. The Mössbauer data confirm this conclusion, but evidence a slight first-order character of the transition.

View Article and Find Full Text PDF

The magnetic, electronic, and Mössbauer spectral properties of [Fe(2)L(μ-OAc)(2)]ClO(4), 1, where L is the dianion of the tetraimino-diphenolate macrocyclic ligand, H(2)L, indicate that 1 is a class III mixed valence iron(II∕III) complex with an electron that is fully delocalized between two crystallographically inequivalent iron sites to yield a [Fe(2)](V) cationic configuration with a S(t) = 9∕2 ground state. Fits of the dc magnetic susceptibility between 2 and 300 K and of the isofield variable-temperature magnetization of 1 yield an isotropic magnetic exchange parameter, J, of -32(2) cm(-1) for an electron transfer parameter, B, of 950 cm(-1), a zero-field uniaxial D(9∕2) parameter of -0.9(1) cm(-1), and g = 1.

View Article and Find Full Text PDF

The local Yb(3+) magnetic susceptibility tensor was recently measured in the frustrated pyrochlore compound Yb(2)Ti(2)O(7) by means of in-field polarized neutron scattering in a single crystal. A very anisotropic effective exchange tensor was derived for the Yb(3+) ion. Using this result, we reinterpret here the data for the powder susceptibility in Yb(2)Ti(2)O(7).

View Article and Find Full Text PDF

We studied the field induced magnetic order in R(2)Ti(2)O(7) pyrochlore compounds with either uniaxial (R=Ho, Tb) or planar (R=Er, Yb) anisotropy, by polarized neutron diffraction. The determination of the local susceptibility tensor {chi(parallel to),chi(perpendicular)} provides a universal description of the field induced structures in the paramagnetic phase (2-270 K), whatever the field value (1-7 T) and direction. Comparison of the thermal variations of chi(parallel to) and chi(perpendicular) with calculations using the rare earth crystal field shows that exchange and dipolar interactions must be taken into account.

View Article and Find Full Text PDF

The structural and magnetic properties of Yb(2)Al(1-x)Mg(x)Si(2) (x = 0, 0.5 and 1), crystallizing in the tetragonal Mo(2)FeB(2)-type structure, are reported in this work. Yb(2)AlSi(2) exhibits a Pauli paramagnetic ground state arising due to spin/valence fluctuations induced by a significant Yb 4f conduction band hybridization.

View Article and Find Full Text PDF

We have studied the field-induced magnetic structures in Tb2Ti2O7, in a wide temperature (0.3 < T < 270 K) and field (0 < H < 7 T) range, by single crystal polarized and unpolarized neutron diffraction, with H parallel[110] axis. A ferromagneticlike structure with k = 0 propagation vector is induced, whose local order at low field and low temperature is akin to spin ice.

View Article and Find Full Text PDF

Carbon encapsulated iron/iron-oxide nanoparticles were obtained using laser pyrolysis method. The powders were processed to produce stable and biocompatible colloidal aqueous dispersions. The synthesis method consisted in the laser decomposition of an aerosol of ferrocene solution in toluene.

View Article and Find Full Text PDF

The catalase from Proteus mirabilis peroxide-resistant bacteria is one of the most efficient heme-containing catalases. It forms a relatively stable compound II. We were able to prepare samples of compound II from P.

View Article and Find Full Text PDF

Passivated iron nanoparticles (10-30 nm) have been synthesized by laser pyrolysis of a mixture of iron pentacarbonyl and ethylene vapors followed by controlled oxidation. The nanoparticles show a well-constructed iron-iron oxide core-shell structure, in which the thickness and nature (structure similar to maghemite, gamma-Fe2O3) of the shell is found to be independent of the initial conditions. On the other hand, the composition of the core is found to change with the particle size from the alpha-Fe structure to a highly disordered Fe phase (probably containing C atoms in its structure).

View Article and Find Full Text PDF

We have studied (Tb1-xLax)2Mo2O7 pyrochlores by neutron diffraction and muSR at ambient and under applied pressure. (Tb,La) substitution expands the lattice and induces a change from a spin-glass-like state (x=0) to a noncollinear ferromagnet (x=0.2).

View Article and Find Full Text PDF

Mössbauer-effect and microwave absorption experimental evidence unambiguously demonstrates the presence of slow, approximately 450 MHz, tunneling of magnetic europium between four equivalent sites in Eu8Ga16Ge30, a stoichiometric clathrate. Remarkably, six of the eight europium atoms, or 11% of the constituents in this solid, tunnel between these four sites separated by 0.55 A.

View Article and Find Full Text PDF

A tungstated zirconia (WZ) catalyst with iron promoter used for the conversion of n-pentane into isopentane has been characterized by Mössbauer spectroscopy. The Mössbauer spectra have been recorded in zero magnetic field in the temperature range 0.05-295 K and with a magnetic field up to 7 T between 4.

View Article and Find Full Text PDF