Publications by authors named "Bonny Banerjee"

The remarkable human ability to predict others' intent during physical interactions develops at a very early age and is crucial for development. Intent prediction, defined as the simultaneous recognition and generation of human-human interactions, has many applications such as in assistive robotics, human-robot interaction, video and robotic surveillance, and autonomous driving. However, models for solving the problem are scarce.

View Article and Find Full Text PDF

Multiple attention-based models that recognize objects via a sequence of glimpses have reported results on handwritten numeral recognition. However, no attention-tracking data for handwritten numeral or alphabet recognition is available. Availability of such data would allow attention-based models to be evaluated in comparison to human performance.

View Article and Find Full Text PDF

Cross-situational learning and social pragmatic theories are prominent mechanisms for learning word meanings (i.e., word-object pairs).

View Article and Find Full Text PDF

A corpus of recordings of deaf speech is introduced. Adults who were pre- or post-lingually deafened as well as those with normal hearing read standardized speech passages totaling 11 h of .wav recordings.

View Article and Find Full Text PDF

The problem of nonlinear acoustic to articulatory inversion mapping is investigated in the feature space using two models, the deep belief network (DBN) which is the state-of-the-art, and the general regression neural network (GRNN). The task is to estimate a set of articulatory features for improved speech recognition. Experiments with MOCHA-TIMIT and MNGU0 databases reveal that, for speech inversion, GRNN yields a lower root-mean-square error and a higher correlation than DBN.

View Article and Find Full Text PDF

Diagrams are a form of spatial representation that supports reasoning and problem solving. Even when diagrams are external, not to mention when there are no external representations, problem solving often calls for internal representations, that is, representations in cognition, of diagrammatic elements and internal perceptions on them. General cognitive architectures--Soar and ACT-R, to name the most prominent--do not have representations and operations to support diagrammatic reasoning.

View Article and Find Full Text PDF

The phenomenon of self-organization has been of special interest to the neural network community throughout the last couple of decades. In this paper, we study a variant of the self-organizing map (SOM) that models the phenomenon of self-organization of the particles forming a string when the string is tightened from one or both of its ends. The proposed variant, called the string tightening self-organizing neural network (STON), can be used to solve certain practical problems, such as computation of shortest homotopic paths, smoothing paths to avoid sharp turns, computation of convex hull, etc.

View Article and Find Full Text PDF