Publications by authors named "Bonnie R Fletcher"

Aging is accompanied by aberrant gene expression that ultimately affects brain plasticity and the capacity to form long-term memories. Immediate-early genes (IEGs) play an active role in these processes. Using a rat model of normal cognitive aging, we found that the expression of Egr1 and c-Fos was associated with chronological age, whereas Arc was more tightly linked to cognitive outcomes in aging.

View Article and Find Full Text PDF

Unlabelled: The therapeutic potential of histone deacetylase inhibitor (HDACi) treatment has attracted considerable attention in the emerging area of cognitive neuroepigenetics. The possibility that ongoing cognitive experience importantly regulates the cell biological effects of HDACi administration, however, has not been systematically examined. In an initial experiment addressing this issue, we tested whether water maze training influences the gene expression response to acute systemic HDACi administration in the young adult rat hippocampus.

View Article and Find Full Text PDF

Memory decline is a common feature of aging. Expression of the immediate-early gene Arc is necessary for normal long-term memory, and although experience dependent Arc transcription is reportedly reduced in the aged rat hippocampus, it has not been clear whether this effect is an invariant consequence of growing older, or a finding linked specifically to age-related memory impairment. Here we show that experience dependent Arc mRNA expression in the hippocampus fails selectively among aged rats with spatial memory deficits.

View Article and Find Full Text PDF

Converging results link histone acetylation dynamics to hippocampus-dependent memory, including evidence that histone deacetylase inhibitor (HDACi) administration enhances long-term memory. Previously, we demonstrated that aging disrupts the coordinated epigenetic response to recent experience observed in the young adult hippocampus. Here, we extended that work to test the cognitive effects of a novel, brain-penetrant HDACi (EVX001688; EVX) that we confirmed yields robust, relatively long lasting dose-dependent increases in histone acetylation in the hippocampus.

View Article and Find Full Text PDF

Mounting evidence linking epigenetic regulation to memory-related synaptic plasticity raises the possibility that altered chromatin modification dynamics might contribute to age-dependent cognitive decline. Here we show that the coordinated orchestration of both baseline and experience-dependent epigenetic regulation seen in the young adult hippocampus is lost in association with cognitive aging. Using a well-characterized rat model that reliably distinguishes aged individuals with significant memory impairment from others with normal memory, no single epigenetic mark or experience-dependent modification in the hippocampus uniquely predicted differences in the cognitive outcome of aging.

View Article and Find Full Text PDF

Age-related impairments in hippocampus-dependent learning and memory tasks are not associated with a loss of hippocampal neurons, but may be related to alterations in synaptic integrity. Here we used stereological techniques to estimate spine number in hippocampal subfields using immunostaining for the spine-associated protein, spinophilin, as a marker. Quantification of the immunoreactive profiles was performed using the optical disector/fractionator technique.

View Article and Find Full Text PDF

We demonstrated previously that when hippocampal-dependent learning and plasticity are compromised by fornix lesions, behaviorally induced expression of the immediate early gene, Arc, is correspondingly low. The medial septum and the vertical diagonal band are major sources of subcortical afferents that innervate the hippocampus via the fornix. Here we assessed the specific contribution of cholinergic afferents from these regions to the impairments in spatial learning and behavioral induction of Arc transcription produced by fornix lesions.

View Article and Find Full Text PDF

The immediate-early gene (IEG) Arc is transcribed after behavioral and physiological treatments that induce synaptic plasticity and is implicated in memory consolidation. The relative contributions of neuronal activity and learning-related plasticity to the behavioral induction of Arc remain to be defined. To differentiate the contributions of each, we assessed the induction of Arc transcription in rats with fornix lesions that impair hippocampal learning yet leave cortical connectivity and neuronal firing essentially intact.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmderjmponpuq5kplvfc08vqinnqc2bg7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once