Background: Alzheimer's disease (AD) disproportionately and uniquely affects females, and these sex differences are further exacerbated by the presence of Apolipoprotein (APOE) ε4 alleles, the top genetic risk factor for late-onset AD. To expand our understanding about how late-onset AD risk might differentially influence males and females, this study explores how APOEε4 affects hippocampal neurogenesis and microglia, key neuroplastic markers involved in AD pathogenesis, differently by sex in middle-aged rats.
Methods: A rat model expressing the humanized (h) APOEε4 allele was characterized to examine markers of adult neurogenesis (neural progenitor cells and new-born neurons) and immune cells (microglia) in the dentate gyrus of the hippocampus in 13 month-old male and female rats.
Sex differences, driven in part by steroid hormones, shape the structure and function of the brain throughout the lifespan and manifest across brain health and disease. The influence of steroid hormones on neuroplasticity, particularly in the adult hippocampus, differs between the sexes, which has important implications for disorders and diseases that compromise hippocampus integrity, such as depression and Alzheimer disease. This Review outlines the intricate relationship between steroid hormones and hippocampal neuroplasticity across the adult lifespan and explores how the unique physiology of male and female individuals can affect health and disease.
View Article and Find Full Text PDFFemale sex and Apolipoprotein E (APOE) ε4 genotype are top non-modifiable risk factors for Alzheimer's disease (AD). Although female-unique experiences like parity (pregnancy and motherhood) have positive effects on neuroplasticity at middle age, previous pregnancy may also contribute to AD risk. To explore these seemingly paradoxical long-term effects of parity, we investigated the impact of parity with APOEε4 genotype by examining behavioural and neural biomarkers of brain health in middle-aged female rats.
View Article and Find Full Text PDFBackground And Objectives: Menopausal hormone therapy (MHT) is generally thought to be neuroprotective, yet results have been inconsistent. Here, we present a comprehensive study of MHT use and brain characteristics in middle- to older aged females from the UK Biobank, assessing detailed MHT data, APOE ε4 genotype, and tissue-specific gray (GM) and white matter (WM) brain age gap (BAG), as well as hippocampal and white matter hyperintensity (WMH) volumes.
Methods: A total of 19,846 females with magnetic resonance imaging data were included (current-users = 1,153, 60.
Adult neurogenesis modifies hippocampal circuits and behavior, but removing newborn neurons does not consistently alter spatial processing, a core function of the hippocampus. Additionally, little is known about sex differences in neurogenesis since few studies have compared males and females. Since adult-born neurons regulate the stress response, we hypothesized that spatial functions may be more prominent under aversive conditions and may differ between males and females given sex differences in stress responding.
View Article and Find Full Text PDFSex and gender differences are seen in cognitive disturbances in a variety of neurological and psychiatry diseases. Men are more likely to have cognitive symptoms in schizophrenia whereas women are more likely to have more severe cognitive symptoms with major depressive disorder and Alzheimer's disease. Thus, it is important to understand sex and gender differences in underlying cognitive abilities with and without disease.
View Article and Find Full Text PDF