Chem Commun (Camb)
October 2015
Modification of the dipeptide of phenylalanine, FF, with a boronic acid (BA) functionality imparts unique aqueous self-assembly behavior that responds to multiple stimuli. Changes in pH and ionic strength are used to trigger hydrogelation via the formation of nanoribbon networks. Furthermore, we show for the first time that the binding of polyols to the BA functionality can modulate a peptide between its assembled and disassembled states.
View Article and Find Full Text PDFDynamic control of thermal transport in solid-state systems is a transformative capability with the promise to propel technologies including phononic logic, thermal management, and energy harvesting. A solid-state solution to rapidly manipulate phonons has escaped the scientific community. We demonstrate active and reversible tuning of thermal conductivity by manipulating the nanoscale ferroelastic domain structure of a Pb(Zr0.
View Article and Find Full Text PDFUnderstanding the growth of whiskers or high aspect ratio features on substrates can be aided when the crystallography of the feature is known. This study has evaluated three methods that utilize electron backscatter diffraction (EBSD) for the determination of the crystallographic growth direction of an individual whisker. EBSD has traditionally been a technique applied to planar, polished samples, and thus the use of EBSD for out-of-surface features is somewhat more difficult and requires additional steps.
View Article and Find Full Text PDFRuthenium oxide is a model pseudocapacitive materials exhibiting good electronic and protonic conduction and has been shown to achieve very high gravimetric capacitances. However, the capacitance of thermally prepared ruthenium oxide is generally low because of low protonic conductivity resulting from dehydration of the oxide upon annealing. High-temperature processing, however also produces the electrically conducting ruthenium oxide rutile phase, which is of great interest for electrochemical capacitors.
View Article and Find Full Text PDFAn efficient antireflection coating (ARC) can enhance solar cell performance through increased light coupling. Here, we investigate solution-grown ZnO nanostructures as ARCs for Si solar cells and compare them to conventional single layer ARCs. We find that nanoscale morphology, controlled through synthetic chemistry, has a great effect on the macroscopic ARC performance.
View Article and Find Full Text PDF