A highly endemic ant fauna is found in the arid regions of southern Africa, including species in the genus Ocymyrmex. This genus of ants has higher species richness in the western arid regions of southern Africa compared to tropical and subtropical parts of the continent. The processes that have produced these patterns of diversity and distribution of arid adapted ants in southern Africa have never been investigated.
View Article and Find Full Text PDFChalcidoidea are mostly parasitoid wasps that include as many as 500 000 estimated species. Capturing phylogenetic signal from such a massive radiation can be daunting. Chalcidoidea is an excellent example of a hyperdiverse group that has remained recalcitrant to phylogenetic resolution.
View Article and Find Full Text PDFBees are the most significant pollinators of flowering plants. This partnership began ca. 120 million years ago, but the uncertainty of how and when bees spread across the planet has greatly obscured investigations of this key mutualism.
View Article and Find Full Text PDFThe order Hymenoptera (wasps, ants, sawflies, and bees) represents one of the most diverse animal lineages, but whether specific key innovations have contributed to its diversification is still unknown. We assembled the largest time-calibrated phylogeny of Hymenoptera to date and investigated the origin and possible correlation of particular morphological and behavioral innovations with diversification in the order: the wasp waist of Apocrita; the stinger of Aculeata; parasitoidism, a specialized form of carnivory; and secondary phytophagy, a reversal to plant-feeding. Here, we show that parasitoidism has been the dominant strategy since the Late Triassic in Hymenoptera, but was not an immediate driver of diversification.
View Article and Find Full Text PDFMol Phylogenet Evol
August 2022
The parasitoid lifestyle is largely regarded as a key innovation that contributed to the evolutionary success and extreme species richness of the order Hymenoptera. Understanding the phylogenetic history of hyperdiverse parasitoid groups is a fundamental step in elucidating the evolution of biological traits linked to parasitoidism. We used a genomic-scale dataset based on ultra-conserved elements and the most comprehensive taxon sampling to date to estimate the evolutionary relationships of Braconidae, the second largest family of Hymenoptera.
View Article and Find Full Text PDFHalting biodiversity decline is one of the most critical challenges for humanity, but monitoring biodiversity is hampered by taxonomic impediments. One impediment is the large number of undescribed species (here called "dark taxon impediment") whereas another is caused by the large number of superficial species descriptions, that can only be resolved by consulting type specimens ("superficial description impediment"). Recently, Sharkey et al.
View Article and Find Full Text PDFRecent technical advances combined with novel computational approaches have promised the acceleration of our understanding of the tree of life. However, when it comes to hyperdiverse and poorly known groups of invertebrates, studies are still scarce. As published phylogenies will be rarely challenged by future taxonomists, careful attention must be paid to potential analytical bias.
View Article and Find Full Text PDFBackground: Parasitoidism, a specialized life strategy in which a parasite eventually kills its host, is frequently found within the insect order Hymenoptera (wasps, ants and bees). A parasitoid lifestyle is one of two dominant life strategies within the hymenopteran superfamily Cynipoidea, with the other being an unusual plant-feeding behavior known as galling. Less commonly, cynipoid wasps exhibit inquilinism, a strategy where some species have adapted to usurp other species' galls instead of inducing their own.
View Article and Find Full Text PDFTwo increasingly popular approaches to reconstruct the Tree of Life involve whole transcriptome sequencing and the target capture of ultraconserved elements (UCEs). Both methods can be used to generate large, multigene datasets for analysis of phylogenetic relationships in non-model organisms. While targeted exon sequencing across divergent lineages is now a standard method, it is still not clear if UCE data can be readily combined with published transcriptomes.
View Article and Find Full Text PDFThe evolution of reversed sexual dichromatism and aposematic coloration has long been of interest to both theoreticians and empiricists. Yet despite the potential connections between these phenomena, they have seldom been jointly studied. Large carpenter bees (genus Xylocopa) are a promising group for such comparative investigations as they are a diverse clade in which both aposematism and reversed sexual dichromatism can occur either together or separately.
View Article and Find Full Text PDFThe field of sequence based phylogenetic analyses is currently being transformed by novel hybrid-based targeted enrichment methods, such as the use of ultraconserved elements (UCEs). Rather than analyzing relationships among organisms using a small number of genes, these methods now allow us to evaluate relationships with many hundreds to thousands of individual gene loci. However, the inclusion of thousands of loci does not necessarily overcome the long-standing challenge of incongruence among phylogenetic trees derived from different genes or gene regions.
View Article and Find Full Text PDFCuticular hydrocarbons (CHCs) cover the cuticles of virtually all insects, serving as a waterproofing agent and as a communication signal. The causes for the high CHC variation between species, and the factors influencing CHC profiles, are scarcely understood. Here, we compare CHC profiles of ant species from seven biogeographic regions, searching for physiological constraints and for climatic and biotic selection pressures.
View Article and Find Full Text PDFObtaining sequence data from historical museum specimens has been a growing research interest, invigorated by next-generation sequencing methods that allow inputs of highly degraded DNA. We applied a target enrichment and next-generation sequencing protocol to generate ultraconserved elements (UCEs) from 51 large carpenter bee specimens (genus Xylocopa), representing 25 species with specimen ages ranging from 2-121 years. We measured the correlation between specimen age and DNA yield (pre- and post-library preparation DNA concentration) and several UCE sequence capture statistics (raw read count, UCE reads on target, UCE mean contig length and UCE locus count) with linear regression models.
View Article and Find Full Text PDFThe classification of the ant subfamily Formicinae is revised to reflect findings from a recent molecular phylogenetic study and complementary morphological investigations. The existing classification is maintained as far as possible, but some tribes and genera are redefined to ensure monophyly. Eleven tribes are recognized, all of which are strongly supported as monophyletic groups: Camponotini, Formicini, Gesomyrmecini, Gigantiopini, Lasiini (= Prenolepidii syn.
View Article and Find Full Text PDFAcropyga ants are a widespread clade of small subterranean formicines that live in obligate symbiotic associations with root mealybugs. We generated a data set of 944 loci of ultraconserved elements (UCEs) to reconstruct the phylogeny of 41 representatives of 23 Acropyga species using both concatenation and species-tree approaches. We investigated the biogeographic history of the genus through divergence dating analyses and ancestral range reconstructions.
View Article and Find Full Text PDFBackground: Ultraconserved elements (UCEs) have been successfully used in phylogenomics for a variety of taxa, but their power in phylogenetic inference has yet to be extensively compared with that of traditional Sanger sequencing data sets. Moreover, UCE data on invertebrates, including insects, are sparse. We compared the phylogenetic informativeness of 959 UCE loci with a multi-locus data set of ten nuclear markers obtained via Sanger sequencing, testing the ability of these two types of data to resolve and date the evolutionary history of the second most species-rich subfamily of ants in the world, the Formicinae.
View Article and Find Full Text PDFWe investigated the species-level taxonomy of the Malagasy Crematogaster (Crematogaster) kelleri-group and an additional more distantly related species of the same subgenus. Morphological data from worker, queen and male ants, as well as genetic data from three nuclear genes (long wavelength rhodopsin, arginine kinase and carbomoylphosphate synthase) and one mitochondrial marker (cytochrome oxidase I) led to the recognition of six species. Within the C.
View Article and Find Full Text PDFMol Phylogenet Evol
November 2012
This study unravels the evolution and biogeographic history of the globally distributed ant genus Crematogaster on the basis of a molecular phylogeny, reconstructed from five nuclear protein-coding genes and a total of 3384 bp of sequence data. A particular emphasis is placed on the evolutionary history of these ants in the Malagasy region. Bayesian and likelihood analyses performed on a dataset of 124 Crematogaster ingroup taxa lend strong support for three deeply diverging phylogenetic lineages within the genus: the Orthocrema clade, the Global Crematogaster clade and the Australo-Asian Crematogaster clade.
View Article and Find Full Text PDFThe species-level taxonomy of the subgenus Crematogaster (Orthocrema) in the Malagasy region is evaluated with both morphological data from worker and queen ants, and genetic data from three nuclear markers (long wavelength rhodopsin, arginine kinase and carbamoylphosphate synthase). These two types of data support the existence of six Orthocrema species: Crematogaster madecassa Emery, Crematogaster rasoherinae Forel, Crematogaster telolafysp. n.
View Article and Find Full Text PDF