Publications by authors named "Bonnie Arendt"

The loss of skeletal muscle mass during aging is a significant health concern linked to adverse outcomes in older individuals. Understanding the molecular basis of age-related muscle loss is crucial for developing strategies to combat this debilitating condition. Long noncoding RNAs (lncRNAs) are a largely uncharacterized class of biomolecules that have been implicated in cellular homeostasis and dysfunction across a many tissues and cell types.

View Article and Find Full Text PDF

Measuring response among patients with multiple myeloma is essential for the care of patients. Deeper responses are associated with better progression free survival (PFS) and overall survival (OS). To test the hypothesis that Mass-Fix, a mass spectrometry-based means to detect monoclonal proteins, is superior to existing methodologies to predict for survival outcomes, samples from the STAMINA trial (NCT01109004), a trial comparing three transplant approaches, were employed.

View Article and Find Full Text PDF

Age is a major risk factor for abdominal aortic aneurysm (AAA), for which treatment options are limited to surgical intervention for large AAA and watchful waiting for small aneurysms. However, the factors that regulate the expansion of aneurysms are unclear. Development of new therapeutic strategies to prevent or treat small aneurysms awaits a more thorough understanding of the etiology of AAA formation and progression with aging.

View Article and Find Full Text PDF

Measurable residual disease (MRD) assessment by marrow-based next-generation flow cytometry (NGF) following autologous stem cell transplantation (ASCT) may lead to false-negative results due to patchy marrow involvement and extramedullary disease in patients with multiple myeloma. We assessed the value of simultaneous MRD evaluation with NGF and serum matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MASS-FIX). Of all 61 complete responders who were NGF-negative for MRD, around day-100 post ASCT, 59% were MASS-FIX-positive.

View Article and Find Full Text PDF

Senescent cells accumulate in numerous tissues in several chronic conditions such as aging, obesity, and diabetes. These cells are in a state of irreversible cell-cycle arrest and secrete inflammatory cytokines, chemokines and other immune modulators that have paracrine effects on nearby tissues. Adipose tissue, in particular, harbors senescent cells, which have been linked with numerous chronic conditions and age-related comorbidities.

View Article and Find Full Text PDF

Our group previously demonstrated that M-protein light chain (LC) glycosylation can be detected on routine MASS-FIX testing. Glycosylation is increased in patients with immunoglobulin LC amyloidosis (AL) and rarely changes over the course of a patient's lifetime. To determine the rates of progression to AL and other plasma cell disorders (PCDs), we used residual serum samples from the Olmsted monoclonal gammopathy of undetermined significance (MGUS) screening cohort.

View Article and Find Full Text PDF

In patients with immunoglobulin light-chain (AL) amyloidosis, depth of hematologic response correlates with both organ response and overall survival. Our group has demonstrated that screening with a matrix-assisted laser desorption/ionization-time-of-flight (TOF) mass spectrometry (MS) is a quick, sensitive, and accurate means to diagnose and monitor the serum of patients with plasma cell disorders. Microflow liquid chromatography coupled with electrospray ionization and quadrupole TOF MS adds further sensitivity.

View Article and Find Full Text PDF

Following the publication of this article, the authors noted that Patrick M. Vanderboom was inadvertently omitted from the author list. The correct author list is as follows: Sanjay Kumar, David Murray, Surendra Dasari, Paolo Milani, David Barnidge, Benjamin Madden, Patrick M.

View Article and Find Full Text PDF

The genetic abnormalities underlying multiple myeloma (MM) are notoriously complex and intraclonal heterogeneity is a common disease feature. In the current study, we describe the establishment of a monoclonal immunoglobulin A (IgA) kappa (κ) MM cell line designated MC-B11/14. Cytogenetic and fluorescence in situ hybridization analyses of the original and relapse patient samples revealed that the MM clone was nonhyperdiploid and possessed an 11;14 chromosomal translocation.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSC) hold great promise in diagnostic and therapeutic applications. However, translation of hiPSC technology depends upon a means of assessing hiPSC quality that is quantitative, high-throughput, and can decipher malignant teratocarcinoma clones from normal cell lines. These attributes are lacking in current approaches such as detection of cell surface makers, RNA profiling, and/or teratoma formation assays.

View Article and Find Full Text PDF

Multiple myeloma (MM) is characterized by the clonal expansion of malignant plasma cells within the bone marrow. There is a growing literature that tumor cells release biologically active microvesicles (MVs) that modify both local and distant microenvironments. In this study, our goals were to determine if MM cells release MVs, and if so, begin to characterize their biologic activity.

View Article and Find Full Text PDF

Increased use of the glycolytic pathway, even in the presence of oxygen, has recently been recognized as a key characteristic of malignant cells. However, the glycolytic phenotype results in increased lactic acid production and, in order to prevent cellular acidosis, tumor cells must increase proton efflux via upregulation of pH regulators such as proton-pumps, sodium-proton exchangers, and/or monocarboxylate transporters (MCT) (e.g.

View Article and Find Full Text PDF

The biology of the malignant plasma cells (PCs) in multiple myeloma (MM) is highly influenced by the bone marrow (BM) microenvironment in which they reside. More specifically, BM stromal cells (SCs) are known to interact with MM cells to promote MM cell survival and proliferation. By contrast, it is unclear if innate immune cells within this same space also actively participate in the pathology of MM.

View Article and Find Full Text PDF

Lymphocyte enhancer binding factor 1 (LEF-1) plays a crucial role in B lineage development and is only expressed in B cell precursors as B cell differentiation into mature B and plasma cells silences its expression. Chronic lymphocytic leukemia (CLL) cells aberrantly express LEF-1 and its expression is required for cellular survival. We hypothesized that modification of the differentiation status of CLL cells would result in loss of LEF-1 expression and eliminate the survival advantage provided by its aberrant expression.

View Article and Find Full Text PDF

Cancer is the consequence of sequential acquisition of mutations within somatic cells. Mutations alter the relative reproductive fitness of cells, enabling the population to evolve in time as a consequence of selection. Cancer therapy itself can select for or against specific subclones.

View Article and Find Full Text PDF

Despite palliative treatments, tumor-induced bone disease (TIBD) remains highly debilitating for many cancer patients and progression typically results in death within two years. Therefore, more effective therapies with enhanced anti-resorptive and cytotoxic characteristics are needed. We developed bisphosphonate-chemotherapeutic conjugates designed to bind bone and hydrolyze, releasing both compounds, thereby targeting both osteoclasts and tumor cells.

View Article and Find Full Text PDF

Primary systemic amyloidosis (AL) is a rare monoclonal plasma cell (PC) disorder characterized by the deposition of misfolded immunoglobulin (Ig) light chains (LC) in vital organs throughout the body. To our knowledge, no cell lines have ever been established from AL patients. Here we describe the establishment of the ALMC-1 and ALMC-2 cell lines from an AL patient.

View Article and Find Full Text PDF

BAFF plays a central role in B-lineage cell biology; however, the regulation of BAFF-binding receptor (BBR) expression during B cell activation and differentiation is not completely understood. In this study, we provide a comprehensive ex vivo analysis of BBRs in human B-lineage cells at various stages of maturation, as well as describe the events that drive and regulate receptor expression. Our data reveal that B-lineage cells ranging from naive to plasma cells (PCs), excluding bone marrow PCs, express BAFF-R uniformly.

View Article and Find Full Text PDF

B cell-activating factor belonging to the TNF family (BAFF) plays a critical role in B cell maturation, yet its precise role in B cell differentiation into Ig-secreting cells (ISCs) remains unclear. In this study, we find that upon isolation human naive and memory B (MB) cells have prebound BAFF on their surface, whereas germinal center (GC) B cells lack detectable levels of prebound BAFF. We attribute their lack of prebound BAFF to cell activation, because we demonstrate that stimulation of naive and MB cells results in the loss of prebound BAFF.

View Article and Find Full Text PDF

B-lymphocyte stimulator (BLyS) is a member of the tumor necrosis factor (TNF) ligand superfamily. Although BLyS costimulates adaptive immune cells, the ability of BLyS to stimulate innate immune cells has not been described. Here, we show that BLyS strongly induces human monocyte survival, and activation as measured by proinflammatory cytokine secretion and up-regulation of costimulatory molecule expression.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a progressive disease that is thought to result from multiple genetic insults to the precursor plasma cell that ultimately affords the tumor cell with proliferative potential despite its differentiated phenotype and resistance to undergoing apoptosis. Altered expression of antiapoptotic factors as well as growth factors have been described in a significant number of patients. However, the key regulatory elements that control myeloma development and progression remain largely undefined.

View Article and Find Full Text PDF

We have previously demonstrated that the responsiveness of multiple myeloma (MM) cells to interferon-alpha (IFN-alpha) stimulation is variable, with an atypical growth response displayed by some cells. Here we report the ability of IFN-alpha to induce tyrosine phosphorylation of a 180 kDa band in the KAS-6/1 MM cell line, which is growth responsive to IFN-alpha. Further characterization demonstrated that this band corresponds to ErbB3.

View Article and Find Full Text PDF