Cell-to-cell variability, born of stochastic chemical kinetics, persists even in large isogenic populations. In the study of single-cell dynamics this is typically accounted for. However, on the population level this source of heterogeneity is often sidelined to avoid the inevitable complexity it introduces.
View Article and Find Full Text PDFStochastic chemical kinetics at the single-cell level give rise to heterogeneous populations of cells even when all individuals are genetically identical. This heterogeneity can lead to nonuniform behaviour within populations, including different growth characteristics, cell-fate dynamics, and response to stimuli. Ultimately, these diverse behaviours lead to intricate population dynamics that are inherently multiscale: the population composition evolves based on population-level processes that interact with stochastically distributed single-cell states.
View Article and Find Full Text PDFThe chemical master equation and its continuum approximations are indispensable tools in the modeling of chemical reaction networks. These are routinely used to capture complex nonlinear phenomena such as multimodality as well as transient events such as first-passage times, that accurately characterise a plethora of biological and chemical processes. However, some mechanisms, such as heterogeneous cellular growth or phenotypic selection at the population level, cannot be represented by the master equation and thus have been tackled separately.
View Article and Find Full Text PDF