The B(2) bradykinin receptor belongs to the G-protein coupled receptor family. Development of new drugs for this important therapeutic target requires structural information on the receptor. The main goal of the present work was to overexpress the human B(2) receptor for future biophysical studies.
View Article and Find Full Text PDFThe development of methods for investigating protein-protein interactions in native complexes and in living cells is an important goal in proteomics. Chemical cross-linking represents a potentially powerful approach to this goal. In this article, we review the application of recently developed oxidative cross-linking techniques to this problem; the involved reactions, mediated by high-valent metal-chelate complexes, are highly efficient in many cases, extremely rapid and do not require chemically modified proteins, although new chemical design strategies can broaden the scope of applications.
View Article and Find Full Text PDFThe purpose was to apply oxidative crosslinking reactions to the study of recognition and signaling mechanisms associated to G-protein-coupled receptors. Using a ruthenium chelate, Ru(bipy)(3)(2+), as photosensitizer and visible light irradiation, in the presence of ammonium persulfate, we performed fast and efficient covalent labeling of the B(2) bradykinin receptor by agonist or antagonist ligands possessing a radio-iodinated phenol moiety. The chemical and topographical specificities of these crosslinking experiments were investigated.
View Article and Find Full Text PDFMass spectrometry was used to identify the sites of covalent attachment of [(14)C]-17alpha-bromoacetamidopropylestradiol ([(14)C]17BAPE(2), an estradiol agonist) to the ligand-binding domain (LBD) of mouse estrogen receptor alpha (ERalpha). A glutathione S-transferase (GST)-LBD chimera protein was overexpressed in Escherichia coli, using a vector encoding GST fused with a C-terminal portion of mouse ERalpha (Ser(313)-Ile(599)), via a sequence enclosing a thrombin cleavage site (located 14 amino acids ahead of Ser313). [(14)C]17BAPE(2) covalent labeling experiments were carried out on the GST-LBD chimera immobilized on glutathione-Sepharose.
View Article and Find Full Text PDFWe investigated the role of H524 of the human estrogen receptor alpha (ERalpha) for the binding of various estrogens [estradiol (E(2)), 3-deoxyestradiol (3-dE(2)), and 17beta-deoxyestradiol (17beta-dE(2))] and antiestrogens [4-hydroxytamoxifen (OHT), RU 39 411 (RU), and raloxifene (Ral)], which possess the 17beta-hydroxyl or counterpart hydroxyl (designated: 17beta/c-OH), with the exception of 17beta-dE(2) and OHT. The work involved a comparison of the binding affinities of these ligands for wild-type and H524 mutant ERs, modified or not with diethyl pyrocarbonate (DEPC), a selective histidine reagent. Alanine substitution of H524 did not significantly change the association affinity constant (relative to OHT) of 17beta-dE(2), whereas those of RU, Ral, E(2), and 3-dE(2) were decreased 3-fold, 14-fold, 24-fold, and 49-fold, respectively.
View Article and Find Full Text PDFA prototypic study of the molecular mechanisms of activation or inactivation of peptide hormone G protein-coupled receptors was carried out on the human B2 bradykinin receptor. A detailed pharmacological analysis of receptor mutants possessing either increased constitutive activity or impaired activation or ligand recognition allowed us to propose key residues participating in intramolecular interaction networks stabilizing receptor inactive or active conformations: Asn(113) and Tyr(115) (TM III), Trp(256) and Phe(259) (TM VI), Tyr(295) (TM VII) which are homologous of the rhodopsin residues Gly(120), Glu(122), Trp(265), Tyr(268), and Lys(296), respectively. An essential experimental finding was the spatial proximity between Asn(113), which is the cornerstone of inactive conformations, and Trp(256) which plays a subtle role in controlling the balance between active and inactive conformations.
View Article and Find Full Text PDFTo investigate the molecular basis for the specificity of ligand recognition in human kinin B(1) (B(1)R) and B(2) (B(2)R) receptors, we constructed a series of chimeric receptors by progressively replacing, from the N to the C terminus, the human B(2)R domains by their B(1) counterparts. The chimeric construct possessing the C-terminal tail and the transmembrane domain VII (TM VII) of the B(2)R (construct 6) displayed 7- and 20- fold decreased affinities for the B(1) agonist [(3)H]desArg(10)-kallidin (desArg(10)-KD) and the B(1) antagonist [(3)H]desArg(10)-[Leu(9)]-KD respectively, as compared with the wild-type B(1)R. Moreover, the substitution of the B(1) TM VII by its B(2) homologue TM increased the affinity for the pseudopeptide antagonists, Hoe140 and NPC 567.
View Article and Find Full Text PDFThe aim of this work was to obtain photoactivatable nonpeptide antagonists of the angiotensin II AT(1) receptor. Based on structure-function relationships, two chemical structures as well as appropriate synthetic schemes were chosen as a frame for the design of radiolabeled azido probes. The feasibility of the strategy was first assessed by the synthesis of two tritiated ligands 21 and 22 possessing a high affinity for the AT(1) receptor and a low nonspecific binding to membrane or cell preparations.
View Article and Find Full Text PDFThe purpose of this work was to investigate the role of N-glycosylation in the expression and pharmacological properties of the the rat AT1a angiotensin II (AII) receptor. Glycosylation-site suppression was carried out by site-directed mutagenesis (Asn-->Gln) of Asn176 and Asn188 (located on the second extracellular loop) and by the removal of Asn4 at the N-terminal end combined with the replacement of the first four amino acids by a 10 amino acid peptide epitope (c-Myc). We generated seven possible N-glycosylation-site-defective mutants, all tagged at their C-terminal ends with the c-Myc epitope.
View Article and Find Full Text PDFWe report that mutation of specific residues in the human B2 bradykinin (BK) receptor induces its marked constitutive activation, evaluated through inositol phosphate production in COS-7 cells expressing the wild-type or mutant receptors. We provide evidence for a strikingly high constitutive activation of the B2 receptor induced by alanine substitution of the Asn113 residue, located in the third transmembrane domain. These results are reminiscent of our previous finding that mutation of the homologous Asn111 residue induces constitutive activation of the AT1 angiotensin II receptor.
View Article and Find Full Text PDFA preliminary model of the rat AT1A angiotensin II (AII) receptor (Joseph, M. P., Maigret, B.
View Article and Find Full Text PDFThe angiotensin II receptor of the AT1-type has been modeled starting from the experimentally determined three-dimensional structure of bacteriorhodopsin as the template. Intermediate 3D structures of rhodopsin and beta 2-adrenergic receptors were built because no direct sequence alignment is possible between the AT1 receptor and bacteriorhodopsin. Docking calculations were carried out on the complex of the modeled receptor with AII, and the results were used to analyze the binding possibilities of DuP753-type antagonistic non-peptide ligands.
View Article and Find Full Text PDFThe differential role of amino acids of the third transmembrane domain on peptide and nonpeptide recognition by the AT1 angiotensin II receptor has been evidenced. The mutation of Ser105 into alanine completely abolished peptide agonist and antagonist binding, while the binding of nonpeptide ligands, including the original radioligands [3H] LF 7-0156 and [3H] LF 8-0129, was more moderately affected. Reverse pharmacological changes, i.
View Article and Find Full Text PDF1. Agonists and antagonists of kinin B1 and B2 receptors were evaluated in vitro for their effects against angiotensin II (AII)-induced contractile responses in the rabbit aorta and for their binding properties to angiotensin AT1 and AT2 receptors from purified membrane of rat liver and lamb uterus respectively. 2.
View Article and Find Full Text PDFLF 7-0156 (2-[[[2-butyl-1-[(4-carboxyphenyl)methyl]-1H-imidazol- 5-yl]methyl]amino]benzoic acid) is a nonpeptide angiotensin II receptor antagonist selective for the type 1 angiotensin receptor. In rabbit aortic rings, LF 7-0156 competitively antagonized angiotensin II-induced contractile responses, with a pA2 value of 8.44.
View Article and Find Full Text PDFAn essential role of the conserved Asp74 in the coupling of the type 1 angiotensin II (AII) receptor (AT1) to phospholipase C has already been reported (Bihoreau, C., Monnot, C., Davies, E.
View Article and Find Full Text PDFWe report new structural data about the rat liver angiotensin II receptor, which belongs to the AT1 subclass. This receptor has been purified at analytical or semi-preparative levels by a previously described strategy involving its photolabelling with a biotinylated azido probe and selective adsorption of the covalent probe-receptor complexes to immobilized streptavidin [Marie, Seyer, Lombard, Desarnaud, Aumelas, Jard and Bonnafous (1990) Biochemistry 29, 8943-8950]. Chemical or enzymic deglycosylation of the purified receptor has shown a shift in its molecular mass from 65 kDa to 40 kDa.
View Article and Find Full Text PDFThe major problem usually encountered in the application of the (strept)avidin-biotin system to the purification of proteins (or other biological molecules) lies in the difficult reversion of the interaction between immobilized (strept)avidin and the adsorbed biotinylated protein. Among the proposed solutions is the selective biotinylation of the entity to be purified by a disulphide-containing biotinylated reagent which allows its recovery from (strept)avidin gels by dithiothreitol (DTT) treatment. As emphasized by the example of angiotensin II receptor purification, achieved using this strategy, optimum reduction of this disulphide bridge may require improvement of its accessibility using denaturating agents such as sodium dodecyl sulphate or urea.
View Article and Find Full Text PDFGastroenterol Clin Biol
July 1991
Our purpose was to validate an ultrasonographic technique based on the assessment of the gastric antrum. Sixteen patients presenting with various functional disorders were studied by ultrasound on two occasions. Ten healthy volunteers were simultaneously studied by scinti- and ultrasonic scans.
View Article and Find Full Text PDFWe have developed biotinylated photoactivable probes that are suitable for covalent labeling of angiotensin II (AII) receptors and the subsequent purification of covalent complexes through immobilized avidin or streptavidin. One of these probes, biotin-NH(CH2)2SS(CH2)2CO-[Ala1,Phe(4N3)8]AII, which contains a cleavable disulfide bridge in its spacer arm and which displays, in its radioiodinated form, very high affinity for AII receptors (Kd approximately 1 nM), proved to be suitable for indirect affinity chromatography of rat liver receptor with facilitated recovery from avidin gels by use of reducing agents. This constituted the central step of an efficient partial purification scheme involving hydroxylapatite chromatography, streptavidin chromatography, and thiopropyl-Sepharose chromatography.
View Article and Find Full Text PDFWe present a brief overview of the present knowledge on the structural and molecular properties of angiotensin II receptors and the various attempts to determine their primary structures, with special reference to our strategy for receptor purification. The strategy involves covalent labeling of the receptor with synthetic biotinylated photoactivatable probes, followed by indirect affinity chromatography on immobilized streptavidin. The various applications of these probes to the study of structural and molecular properties and to the cell biology of angiotensin II receptors are discussed.
View Article and Find Full Text PDFInt J Pept Protein Res
September 1989
We propose here a biotinyl-aminohexanoyl-[Ala1, Phe(4N3)8]angiotensin II analog as a radioiodinatable and photoactivatable probe for covalent labeling, detection and isolation of angiotensin receptors. A combination of solid phase and minimum-protection segment-coupling strategy using hexafluorophosphate of (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium (BOP) as a coupling reagent is proposed for the synthesis of this probe. Optimized yields were obtained by HPLC monitoring of all reactions.
View Article and Find Full Text PDFThe present work delineates the basis for chemical modifications which can be introduced on the angiotensin II (AII) molecule to design probes suitable for indirect affinity techniques, especially for receptor purification. Using the solid-phase synthesis strategy, biotin or dinitrophenyl moieties have been added at the N-terminus of AII, with aminohexanoic acid as spacer arm. The resulting probes, (6-biotinylamido)hexanoyl-AII (Bio-Ahx-AII) and dinitrophenylaminohexanoyl-AII (Dnp-Ahx-AII), were prepared in their monoiodinated and highly labelled radioiodinated forms, with possible sulphoxidation of biotin.
View Article and Find Full Text PDFThe design of angiotensin II (A II)-derived probes suitable for indirect affinity techniques is presented. Biotin or dinitrophenyl moieties have been added at the N-terminus of A II, through aminohexanoic acid as spacer arm, to generate (6-biotinylamido)-hexanoyl-AII (Bio-Ahx-AII) and dinitrophenyl- aminohexanoyl-AII (Dnp-Ahx-AII). Monoiodinated and highly labeled radioiodinated forms of these probes have been prepared.
View Article and Find Full Text PDFThrough the blockade of the Na-K-ATPase, ouabain inhibits several biochemical and biological events leading to the proliferation of activated lymphocytes. Since we already found that interleukin 1 production was not prevented by ouabain, we investigated by which mechanism this drug inhibits mitogen-induced human T lymphocyte activation, with respect to the interleukin 2 (IL 2) pathway. Our data revealed that at concentrations lower than 0.
View Article and Find Full Text PDF