Publications by authors named "Bonmatin J"

Pollution from pesticides is an increasing concern for human health and biodiversity conservation. However, there is lack of knowledge about some emerging molecules such as SDHI fungicides (succinate dehydrogenase inhibitors) that are widely used but potentially highly toxic for vertebrates. Boscalid, fluopyram, and bixafen are 3 frequent SDHI molecules commonly detected in surface waters, which may pose risks to aquatic species.

View Article and Find Full Text PDF

Neonicotinoids are the top-selling insecticides worldwide. Because of their method of use, mainly to coat seeds, neonicotinoids have been found to widely contaminate the environment. Their high toxicity has been shown to be a major concern in terms of impact on biodiversity, and the use of these insecticides has been associated with population declines of species in different countries.

View Article and Find Full Text PDF

Neonicotinoids are systemic insecticides used since the 1990's , that possess renal tubular toxicity. We conducted a field-based descriptive study in the North Central Dry-zone of Sri Lanka, where chronic kidney disease (CKD) of unknown etiology has been increasing since the 1990's. To elucidate the relationship between renal tubular dysfunctions and urinary neonicotinoids concentrations, we collected spot urine samples from15 CKD patients, 15 family members, and 62 neighbors in 2015, analyzed two renal tubular biomarkers, Cystatin-C and L-FABP, quantified seven neonicotinoids and a metabolite N-desmethyl-acetamiprid by LC-MS/MS; and we investigated their symptoms using a questionnaire.

View Article and Find Full Text PDF

The One Health approach acknowledges that human health is firmly linked to animal and environmental health. It involves using animals such as bees and other pollinators as sentinels for environmental contamination or biological indicators. Beekeepers noticed intoxications of apiaries located in the vicinity of sheep and cattle farms, which led to the suspicion of bees' intoxication by the products used for livestock: veterinary medicinal products (VMPs) and Biocides, confirmed by laboratory analysis.

View Article and Find Full Text PDF

Van Klink (Reports, 24 April 2020, p. 417) argue for a more nuanced view of insect decline, and of human responsibility for this decline, than previously suggested. However, shortcomings in data selection and methodology raise questions about their conclusions on trends and drivers.

View Article and Find Full Text PDF

Synthetic pesticides such as neonicotinoids are commonly used to treat crops in tropical regions, where data on environmental and human contamination are patchy and make it difficult to assess to what extent pesticides may harm human health, especially in less developed countries. To assess the degree of environmental and human contamination with neonicotinoids we collected soil, water and people's hair in three agricultural regions of the Philippines and analysed them by ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS-MS). Five neonicotinoids, namely acetamiprid, clothianidin, imidacloprid, thiacloprid and thiamethoxam were targeted.

View Article and Find Full Text PDF

Food can be health-giving. A global transition towards plant-based diets may equally help curb carbon emissions, slow land-system change and conserve finite resources. Yet, projected benefits of such 'planetary health' diets imperfectly capture the environmental or societal health outcomes tied to food production.

View Article and Find Full Text PDF

We present a synthetic review and expert consultation that assesses the actual risks posed by arthropod pests in four major crops, identifies targets for integrated pest management (IPM) in terms of cultivated land needing pest control and gauges the implementation "readiness" of non-chemical alternatives. Our assessment focuses on the world's primary target pests for neonicotinoid-based management: western corn rootworm (WCR, Diabrotica virgifera virgifera) in maize; wireworms (Agriotes spp.) in maize and winter wheat; bird cherry-oat aphid (Rhopalosiphum padi) in winter wheat; brown planthopper (BPH, Nilaparvata lugens) in rice; cotton aphid (Aphis gossypii) and silver-leaf whitefly (SLW, Bemisia tabaci) in cotton.

View Article and Find Full Text PDF

Objectives: Neonicotinoid insecticides are widely used systemic pesticides with nicotinic acetylcholine receptor agonist activity that are a concern as environmental pollutants. Neonicotinoids in humans and the environment have been widely reported, but few studies have examined their presence in fetuses and newborns. The objective of this study is to determine exposure to neonicotinoids and metabolites in very low birth weight (VLBW) infants.

View Article and Find Full Text PDF

Usage of neonicotinoids is common in all agricultural regions of the world but data on environmental contamination in tropical regions is scarce. We conducted a survey of five neonicotinoids in soil, water and sediment samples along gradients from crops fields to protected lowland tropical forest, mangroves and wetlands in northern Belize, a region of high biodiversity value. Neonicotinoid frequency of detection and concentrations were highest in soil (68%) and lowest in water (12%).

View Article and Find Full Text PDF
Article Synopsis
  • The heavy use of pesticides, particularly neonicotinoids and fipronil, is damaging environmental services crucial for agricultural productivity.
  • The development of pest resistance to these chemicals over two decades highlights the need for alternative pest management strategies that do not solely rely on synthetic pesticides.
  • A variety of effective pest control methods exist, including a novel insurance approach to crop protection, emphasizing the necessity for a sustainable agriculture framework focused on natural ecosystem services instead of chemical usage.
View Article and Find Full Text PDF

New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous Worldwide Integrated Assessment (WIA) in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators.

View Article and Find Full Text PDF

With the exponential number of published data on neonicotinoids and fipronil during the last decade, an updated review of literature has been conducted in three parts. The present part focuses on gaps of knowledge that have been addressed after publication of the Worldwide Integrated Assessment (WIA) on systemic insecticides in 2015. More specifically, new data on the mode of action and metabolism of neonicotinoids and fipronil, and their toxicity to invertebrates and vertebrates, were obtained.

View Article and Find Full Text PDF

A previous study claimed a differential behavioural resilience between spring or summer honey bees (Apis mellifera) and bumble bees (Bombus terrestris) after exposure to syrup contaminated with 125 µg L imidacloprid for 8 days. The authors of that study based their assertion on the lack of body residues and toxic effects in honey bees, whereas bumble bees showed body residues of imidacloprid and impaired locomotion during the exposure. We have reproduced their experiment using winter honey bees subject to the same protocol.

View Article and Find Full Text PDF

Our assessment of the multi-year overwintering study by Pilling et al. (2013) revealed a number of major deficiencies regarding the study design, the protocol and the evaluation of results. Colonies were exposed for short periods per year to flowering oilseed rape and maize grown from thiamethoxam-coated seeds.

View Article and Find Full Text PDF

Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca.

View Article and Find Full Text PDF

We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section "other invertebrates" review available studies on the other terrestrial species.

View Article and Find Full Text PDF

Systemic insecticides are applied to plants using a wide variety of methods, ranging from foliar sprays to seed treatments and soil drenches. Neonicotinoids and fipronil are among the most widely used pesticides in the world. Their popularity is largely due to their high toxicity to invertebrates, the ease and flexibility with which they can be applied, their long persistence, and their systemic nature, which ensures that they spread to all parts of the target crop.

View Article and Find Full Text PDF