Micromachines (Basel)
November 2017
Achieving the desired resonant frequency of resonators has been an important issue, since it determines their performance. This paper presents the design and analysis of two concepts for the resonant frequency tuning of resonators. The proposed methods are based on the stiffness alteration of the springs by geometrical modification (shaft-widening) or by mechanical restriction (shaft-holding) using micromachined frequency tuning units.
View Article and Find Full Text PDFDuring dynamic atomic force microscopy (AFM), the deflection of a scanning cantilever generates multiple frequency terms due to the nonlinear nature of AFM tip-sample interactions. Even though each frequency term is reasonably expected to encode information about the sample, only the fundamental frequency term is typically decoded to provide topographic mapping of the measured surface. One of main reasons for discarding higher harmonic signals is their low signal-to-noise ratio.
View Article and Find Full Text PDFIntentional utilization of geometric nonlinearity in micro/nanomechanical resonators provides a breakthrough to overcome the narrow bandwidth limitation of linear dynamic systems. In past works, implementation of intentional geometric nonlinearity to an otherwise linear nano/micromechanical resonator has been successfully achieved by local modification of the system through nonlinear attachments of nanoscale size, such as nanotubes and nanowires. However, the conventional fabrication method involving manual integration of nanoscale components produced a low yield rate in these systems.
View Article and Find Full Text PDFNonlinear mechanical systems promise broadband resonance and instantaneous hysteretic switching that can be used for high sensitivity sensing. However, to introduce nonlinear resonances in widely used microcantilever systems, such as AFM probes, requires driving the cantilever to an amplitude that is too large for any practical applications. We introduce a novel design for a microcantilever with a strong nonlinearity at small cantilever oscillation amplitude arising from the geometrical integration of a single BN nanotube.
View Article and Find Full Text PDF