Sensory systems must be able to extract features of a stimulus to detect and represent properties of the world. Because sensory signals are constantly changing, a critical aspect of this transformation relates to the timing of signals and the ability to filter those signals to select dynamic properties, such as visual motion. At first assessment, one might think that the primary biophysical properties that construct a temporal filter would be dynamic mechanisms such as molecular concentration or membrane electrical properties.
View Article and Find Full Text PDFIt is well known that spiking neurons can produce action potentials in response to extracellular stimulation above certain threshold. It is widely assumed that there is no upper limit to somatic stimulation, except for cellular or electrode damage. Here we demonstrate that there is an upper stimulation threshold, above which no action potential can be elicited, and it is below the threshold of cellular damage.
View Article and Find Full Text PDF