Publications by authors named "Bongkyeom Kim"

Self-assembly-based structural transition has been explored for various applications, including molecular machines, sensors, and drug delivery. In this study, we developed new redox-active metal-organic frameworks (MOFs) called DGIST-10 series that comprise π-acidic 1,4,5,8-naphthalenediimide (NDI)-based ligands and Ni ions, aiming to boost ligand-self-assembly-driven structural transition and study the involved mechanism. Notably, during the synthesis of the MOFs, a single-crystal-amorphous-single-crystal structural transition occurred within the MOFs upon radical formation, which was ascribed to the fact that radicals prefer spin-pairing or through-space electron delocalization by π-orbital overlap.

View Article and Find Full Text PDF

Radical-ionic metal-organic frameworks (MOFs) have unique optical, magnetic, and electronic properties. These radical ions, forcibly formed by external stimulus-induced redox processes, are structurally unstable and have short radical lifetimes. Here, we report two naphthalenediimide-based (NDI-based) Ca-MOFs: DGIST-6 and DGIST-7.

View Article and Find Full Text PDF

We present novel titanium-porphyrinic gels (TPGs) and titanium-porphyrinic aerogels (TPAs), in which porphyrinic ligand tetrakis(4-carboxyphenyl)porphyrin is coordinated to Ti-oxo clusters. These hierarchically porous TPAs, with micro-, meso-, and macropores and reactant-concentration-dependent Brunauer-Emmett-Teller surface areas of 407-738 m  g , are prepared by CO critical point drying of TPGs. Although the Ti → Ti photoreduction of TPAs is less efficient than that of crystalline microporous Ti-porphyrinic framework DGIST-1, prompt diffusion of O and spin-trapping agents into the TPA pores causes the rapid generation of reactive oxygen species (ROS), as observed by EPR spectroscopy.

View Article and Find Full Text PDF

Herein, we report titanium-organic gels (TOGs) as new Ti-oxo-based materials that exhibit stimuli-responsive sol-gel transformations and hierarchical porosity upon the removal of solvent molecules. Heating a solution of Ti-oxo clusters and pyromellitic acid as a tetratopic ligand produces TOGs that readily become sols by applying physical stimuli such as shaking or vortexing under ambient conditions. Porous titanium-organic aerogels (TOAs) were obtained by the CO supercritical point drying (CPD) of the TOGs, and their porous structures were characterized by N adsorption and desorption isotherm measurements.

View Article and Find Full Text PDF