Publications by authors named "Bonggyu Kim"

MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a crucial role in regulating gene expression. Dysregulation of miRNAs is associated with various human diseases, including cancer. Accurate quantification of miRNAs in bodily fluids or tissue biopsy samples is essential for their use as biomarkers in tumor diagnosis, yet current methods remain suboptimal.

View Article and Find Full Text PDF

Transcription factor-based bioreporters have been extensively studied for monitoring and detecting environmental toxicants. In Escherichia coli, the multiple antibiotic resistance regulator (MarR) induces transcription upon binding to salicylic acid (SA). We generated SA-specific E.

View Article and Find Full Text PDF

Flavonoid -glucosides, which are found in several plant families, are characterized by several biological properties, including antioxidant, anticancer, anti-inflammatory, neuroprotective, hepatoprotective, cardioprotective, antibacterial, antihyperalgesic, antiviral, and antinociceptive activities. The biosynthetic pathway of flavonoid -glucosides in plants has been elucidated. In the present study, a pathway was introduced to to synthesize four flavonoid -glucosides, namely, isovitexin, vitexin, kaempferol 6--glucoside, and kaempferol 8--glucoside.

View Article and Find Full Text PDF

Bacterial cell-based biosensors have been widely developed for detecting environmental toxic materials. The -operon in is a Zn(II)-responsive genetic system and is employed in Zn(II), Cd(II), and Hg(II)-sensing biosensors. In this study, point mutations were introduced in the regulatory protein ZntR to modulate its target selectivity, and metal ion-exporting genes, such as and , in host cells were deleted to increase cellular metal ion levels and enhance specificity.

View Article and Find Full Text PDF

Aim: Chlorogenic acid and p-coumaroyl shikimate are hydroxycinnamic acid derivatives. These compounds are nutraceutical supplements due to their biological activities including prevention of cardiovascular disease and cancers. These two compounds were synthesized in Escherichia coli through two-culture system using two mutants, which are biochemically interdependent.

View Article and Find Full Text PDF

Objective: To explore the possible mechanism of electroacupuncture to improve insulin sensitivity in type 2 diabetes rats.

Methods: Fourteen Zucker Diabetic Fatty (ZDF) rats were randomly divided into two groups: a model group and an electroacupuncture group, with 7 rats in each group. Seven Zucker Lean (ZL) rats served as a control group.

View Article and Find Full Text PDF

Genistein is a type of isoflavonoid found predominantly in leguminous plants. Genistein has diverse biological activities, such as anthelmintic and antioxidant effects, as well as inhibitory effects on the growth of several cancers. In addition, genistein is well known as a phytoestrogen.

View Article and Find Full Text PDF

Bacterial cell-based biosensors, or whole-cell bioreporters (WCBs), are an alternative tool for the quantification of hazardous materials. Most WCBs share similar working mechanisms. In brief, the recognition of a target by sensing domains induces a biological event, such as changes in protein conformation or gene expression, providing a basis for quantification.

View Article and Find Full Text PDF

Background: Acridone alkaloids are heterocyclic compounds that exhibit a broad-range of pharmaceutical and chemotherapeutic activities, including anticancer, antiviral, anti-inflammatory, antimalarial, and antimicrobial effects. Certain plant species such as Citrus microcarpa, Ruta graveolens, and Toddaliopsis bremekampii synthesize acridone alkaloids from anthranilate and malonyl-CoA.

Results: We synthesized two acridones in Escherichia coli.

View Article and Find Full Text PDF

Despite the known hazardous effects of antimony (Sb) on human health, Sb monitoring biosensors have not been as actively investigated as arsenic (As) biosensors. Whole-cell bioreporters (WCBs) employing an arsenic-responsive operon and a regulatory protein (ArsR) are reportedly capable of monitoring arsenite, arsenate, and antimonite. However, the potential of WCBs as Sb biosensors has been largely ignored.

View Article and Find Full Text PDF

Two hydroxybenzoyl amines, 4-hydroxybenzoyl tyramine (4-HBT) and -2-hydroxybenzoyl tryptamine (2-HBT), were synthesized using . While 4-HBT was reported to demonstrate anti-atherosclerotic activity, 2-HBT showed anticonvulsant and antinociceptive activities. We introduced genes chorismate pyruvate-lyase (), tyrosine decarboxylase (), isochorismate synthase (), isochorismate pyruvate lyase (), and tryptophan decarboxylase () for each substrate, 4-hydroxybenzoic acid (4-HBA), tyramine, 2-hydroxybenzoic acid (2-HBA), and tryptamine, respectively, in .

View Article and Find Full Text PDF

Anthranilate derivatives have been used as flavoring and fragrant agents for a long time. Recently, these compounds are gaining attention due to new biological functions including antinociceptive and analgesic activities. Three anthranilate derivatives, -methylanthranilate, methyl anthranilate, and methyl -methylanthranilate were synthesized using metabolically engineered stains of .

View Article and Find Full Text PDF

Despite the large number of bioreporters developed to date, the ability to detect heavy metal(loid)s with bioreporters has thus far been limited owing to the lack of appropriate genetic systems. We here present a novel approach to modulate the selectivity and sensitivity of microbial whole-cell bioreporters (WCBs) for sensing metal(loid)s via the znt-operon from Escherichia coli, which were applied to quantify the bioavailability of these contaminants in environmental samples. The WCB harboring the fusion gene zntAp::egfp was used as a microbial metal(loid) sensor, which was turned on by the interaction between ZntR and metal(loid) ions.

View Article and Find Full Text PDF

Background: Hydroxycinnamoyl anthranilates, also known as avenanthramides (avns), are a group of phenolic alkaloids with anti-inflammatory, antioxidant, anti-itch, anti-irritant, and antiatherogenic activities. Some avenanthramides (avn A-H and avn K) are conjugates of hydroxycinnamic acids (HC), including p-coumaric acid, caffeic acid, and ferulic acid, and anthranilate derivatives, including anthranilate, 4-hydroxyanthranilate, and 5-hydroxyanthranilate. Avns are primarily found in oat grain, in which they were originally designated as phytoalexins.

View Article and Find Full Text PDF

Metals are essential to all organisms; accordingly, cells employ numerous genes to maintain metal homeostasis as high levels can be toxic. In the present study, the gene operons responsive to metal(loid)s were employed to generate bacterial cell-based biosensors to detect target metal(loid)s. The cluster of genes related to copper transport known as the cop-operon is regulated by the interaction between the copA promoter region (copAp) and CueR, turning on and off gene expression upon copper ion binding.

View Article and Find Full Text PDF

In , the transcription of genes related to metal homeostasis is activated by the presence of target metals. The promoter regions of those genes can be fused with reporter genes to generate whole-cell bioreporters (WCBs); these organisms sense the presence of target metals through reporter gene expression. However, the limited number of available promoters for sensing domains restricts the number of WCB targets.

View Article and Find Full Text PDF

Plants synthesize various phenol amides. Among them, hydroxycinnamoyl (HC) tryptamines and serotonins exhibit antioxidant, anti-inflammatory, and anti-atherogenic activities. We synthesized HC-tryptamines and HC-serotonin from several HCs and either tryptamine or serotonin using Escherichia coli harboring the 4CL (4-coumaroyl CoA ligase) and CaHCTT [hydroxycinnamoyl-coenzyme A:serotonin N-(hydroxycinnamoyl)transferase] genes.

View Article and Find Full Text PDF

Many membrane-associated proteins are involved in various signaling pathways, including the phosphoinositide 3-kinase (PI3K) pathway, which has key roles in diverse cellular processes. Disruption of the activities of these proteins is involved in the development of disease in humans, making these proteins promising targets for drug development. In most cases, the catalytic domain is targeted; however, it is also possible to target membrane associations in order to regulate protein activity.

View Article and Find Full Text PDF

Background: Coumarins are a major group of plant secondary metabolites that serves as defense compounds against pathogens. Although coumarins can be obtained from diverse plant sources, the use of microorganisms to synthesize them could be an alternative way to supply building blocks for the synthesis of diverse coumarin derivatives.

Results: Constructs harboring two genes, F6'H (encoding feruloyl CoA 6' hydroxylase) and 4CL (encoding 4-coumarate CoA:ligase), were manipulated to increase the productivity of coumarins.

View Article and Find Full Text PDF

Most flavonoids are glycosylated and the nature of the attached sugar can strongly affect their physiological properties. Although many flavonoid glycosides have been synthesized in Escherichia coli, most of them are glucosylated. In order to synthesize flavonoids attached to alternate sugars such as glucuronic acid and galactoside, E.

View Article and Find Full Text PDF

Flavonoids are ubiquitous phenolic compounds and at least 9,000 have been isolated from plants. Most flavonoids have been isolated and assessed in terms of their biological activities. Microorganisms such as Escherichia coli and Saccharomyces cerevisiae are efficient systems for the synthesis of flavonoids.

View Article and Find Full Text PDF

Biocatalysts are a valuable tool for the structural modification of fine chemicals. Flavonoids possess several biological activities, which are correlated to their antioxidant activity. The numbers of hydroxyl groups in flavonoids are critical for their antioxidant activity.

View Article and Find Full Text PDF

Structure-activity relationship (SAR) calculations were used to find monoamine oxidase-B (MAO-B) inhibitors by identifying pharmacophores exhibiting high inhibitory activities. Several such chromenylchalcones were designed and synthesized accordingly. Their inhibitory effects on MAO-B were determined using an HPLC-based method and an MAO-B enzyme assay kit.

View Article and Find Full Text PDF

Flavonoids are predominantly found as glycosides in plants. The glycosylation of flavonoids is mediated by uridine diphosphate-dependent glycosyltransferases (UGT). UGTs attach various sugars, including arabinose, glucose, galactose, xylose, and glucuronic acid, to flavonoid aglycones.

View Article and Find Full Text PDF

Two bioactive O-methylflavonoids, sakuranetin (7-O-methylnaringenin) and ponciretin (7-O-methylnaringenin), were synthesized in Escherichia coli. Sakuranetin inhibits germination of Magnaporthe grisea, and ponciretin is a potential inhibitor of Helicobacter pylori. To achieve this, we reconstructed the naringenin biosynthesis pathway in E.

View Article and Find Full Text PDF