Molecular machines, which operate in highly fluctuating environments far from equilibrium, may benefit from their non-equilibrium environments. It is, however, a topic of controversy how the efficiency of the microscopic engines can be enhanced. Recent experiments showed that microscopic Stirling engines in bacterial reservoirs could show high performance beyond the equilibrium thermodynamics.
View Article and Find Full Text PDFRecent advances in chiral nanomaterials interacting with circularly polarized (CP) light open new expectations for optoelectronics in various research fields such as quantum- and biology-related technology. To fully utilize the great potential of chiral optoelectronic devices, the development of chiral optoelectronic devices that function in the near-infrared (NIR) region is required. Herein, we demonstrate a NIR-absorbing, chiroptical, low-band-gap polymer semiconductor for high-performance NIR CP light phototransistors.
View Article and Find Full Text PDFWe employ only the positions of colloidal particles and construct machine learning (ML) models to test the presence of structural order in glass transition for two kinds of two-dimensional (2D) colloids: 2D polydisperse colloids (PC) with medium-range crystalline order (MRCO) and 2D binary colloids (BC) without MRCO. ML models predict the glass transition of 2D colloids successfully without any information on MRCO. Even certain ML models trained with BC predict the glass transition of PC successfully, thus suggesting that universal structural characteristics would exist besides MRCO.
View Article and Find Full Text PDFOrganic ionic plastic crystals (OIPCs) consist of molecular ions of which interactions are strong enough to maintain crystalline order but are weak enough to allow the rotations of the molecular ions at sufficiently high temperatures. When defects such as Schottky vacancies and grain boundaries are introduced into OIPCs, the defects facilitate the transport of dopants such as Li ions, for which OIPCs are considered as strong candidates for solid electrolytes. The transport mechanism of dopant ions in OIPCs with defects, however, remains elusive at a molecular level partly because it is hard in experiments to track the dopant ions and control the types of defects systematically.
View Article and Find Full Text PDFIn this study, we specifically visualized DNA molecules at their AT base pairs after in vitro phage ejection. Our AT-specific visualization revealed that either end of the DNA molecule could be ejected first with a nearly 50% probability. This observation challenges the generally accepted theory of Last In First Out (LIFO), which states that the end of the phage λ DNA that enters the capsid last during phage packaging is the first to be ejected, and that both ends of the DNA are unable to move within the extremely condensed phage capsid.
View Article and Find Full Text PDFThe shape of a viral capsid affects the equilibrium conformation of DNA inside the capsid: the equilibrium DNA conformation inside a spherical capsid is a concentric spool while the equilibrium conformation inside an elongated capsid is a twisted toroid. The conformation of DNA, jammed inside the capsid due to high internal pressure, influences the ejection kinetics of the DNA from the capsid. Therefore, one would expect that the DNA ejection kinetics would be subject to the shape of the viral capsid.
View Article and Find Full Text PDFOrganic ionic plastic crystals (OIPCs), which consist of organic molecular ions, are considered excellent candidates for solid electrolytes due to their high ionic conductivity in solid phases. Molecular ions undergo either rotational or conformational relaxation at certain temperatures in OIPCs. There have been molecular simulations to understand the rotational motion.
View Article and Find Full Text PDFVarious dopant alkali ions have been introduced into organic ionic plastic crystals (OIPCs) in order to design solid electrolytes with the desired thermal stability and ionic conductivity. We performed extensive molecular dynamics simulations to investigate at the molecular level how dopant alkali ions affect the rotational and the translational diffusion of ions and the thermal stability of OIPCs. We introduced lithium (Li), sodium (Na), and potassium (K) ions as dopants into 1-methyl-3-methylimidazolium hexafluorophosphate ([MMIM][PF]) OIPCs at the molecular level.
View Article and Find Full Text PDFThe dynamic heterogeneity and the translation-rotation decoupling are the dynamic signatures of glasses and supercooled liquids. Whether and how the dynamic heterogeneity would relate to the local structure of glasses has been a puzzle for decades. In this work we perform molecular dynamics simulations for tracers in both two-dimensional polydisperse colloids (2DPC) and two-dimensional binary colloids (2DBC).
View Article and Find Full Text PDFPolymers (Basel)
November 2021
The time-temperature superposition (TTS) principle, employed extensively for the analysis of polymer dynamics, is based on the assumption that the different normal modes of polymer chains would experience identical temperature dependence. We aim to test the critical assumption for TTS principle by investigating poly(ethylene oxide) (PEO) melts, which have been considered excellent solid polyelectrolytes. In this work, we perform all-atom molecular dynamics simulations up to 300 ns at a range of temperatures for PEO melts.
View Article and Find Full Text PDFCell membranes are heterogeneous with a variety of lipids, cholesterol, and proteins and are composed of domains of different compositions. Such heterogeneous environments make the transport of cholesterol complicated: cholesterol not only diffuses within a particular domain but also travels between domains. Cholesterol also flip-flops between upper and lower leaflets such that cholesterol may reside both within leaflets and in the central region between two leaflets.
View Article and Find Full Text PDFOrganic ionic plastic crystals (OIPCs) are the crystals of electrolytes with a long-range translational order. The rotational modes of ions in OIPCs are, however, activated even in solid phases such that the diffusion of dopants such as lithium ions may be facilitated. OIPCs have been, therefore, considered as good candidates for solid electrolytes.
View Article and Find Full Text PDFIntermolecular interactions between cholesterol and lipids in cell membranes, which play critical roles in cellular processes such as the formation of nano-domains, depend on the molecular structure of the lipids. The diffusion and the spatial arrangement of cholesterol within the lipid membranes also change with the type of lipids. For example, the flip-flop, an important transport mechanism for cholesterol in the membranes, can be facilitated significantly by the presence of unsaturated lipids.
View Article and Find Full Text PDFThe conformational structures of heterocyclic compounds are of considerable interest to chemists and biochemists as they are often the constituents of natural products. Among saturated four-membered heterocycles, the conformational structure of oxetane is known to be slightly puckered in equilibrium because of a low interconversion barrier in its ring-puckering potential, unlike cyclobutane and thietane. We measured the one-photon vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) and two-photon IR+VUV-MATI spectra of oxetane for the first time to determine the ring-puckering potential of the oxetane cation and hence its conformational structure in the D (ground) state.
View Article and Find Full Text PDFPhys Rev E
November 2020
Both polymer fiber glasses and bulk polymer glasses exhibit nonlinear mechanical responses under uniaxial deformation. In polymer fibers, however, polymer chains are confined strongly and the surface area is relatively large compared to their volume. The confinement and the surface may lead to the spatially heterogeneous relaxation of chains in polymer fibers.
View Article and Find Full Text PDFThe morphological structure and dynamics of confined polymers adjacent to the polymer-polymer interface have a profound effect on determining the overall physical properties of polymer blends. We measured the diffusion dynamics of poly(methyl methacrylate) (PMMA) melts confined between polystyrene (PS) layers using neutron reflectivity. Combinations of various thicknesses of PMMA and deuterated PMMA (PMMA) allowed us to experimentally reveal the nonmonotonic behavior of polymer mobility near the PS-PMMA interface.
View Article and Find Full Text PDFChromatin undergoes condensation-decondensation processes repeatedly during its cell lifetime. The spatial organization of chromatin in nucleus resembles the fractal globule, of which structure significantly differs from an equilibrium polymer globule. There have been efforts to develop a polymer globule model to describe the fractal globulelike structure of tightly packed chromatin in nucleus.
View Article and Find Full Text PDFWe report Brownian dynamics simulations of tracer diffusion in regularly crosslinked polymer networks in order to elucidate the transport of a tracer particle in polymer networks. The average mesh size of homogeneous polymer networks is varied by assuming different degrees of crosslinking or swelling, and the size of a tracer particle is comparable to the average mesh size. Simulation results show subdiffusion of a tracer particle at intermediate time scales and normal diffusion at long times.
View Article and Find Full Text PDFOrganic ionic plastic crystals (OIPCs) are a unique class of materials that undergo orientational and conformational motions while maintaining a long-range ordered lattice structure. OIPCs have attracted attention because the rotational motions were known to accelerate the diffusion of mobile ions such as lithium ions. However, only a small number of combinations of cations and anions lead to OIPCs because the rotational motion may be restricted by both the molecular structure and the crystal class.
View Article and Find Full Text PDFThe loop formation of a single polymer chain has served as a model system for various biological and chemical processes. Theories based on the Smoluchowski equation proposed that the rate constant (k) of the loop formation would be inversely proportional to viscosity (η), i.e.
View Article and Find Full Text PDFFor polymer-blend films, local dynamics in confined polymer domains tend to differ from the bulk because of significant contributions from the polymer-polymer interface. Herein, we investigated the diffusion dynamics of entangled polymer thin films confined between different polymers in a direction perpendicular to the surface using neutron reflectivity. We found that a bilayer of poly(methyl methacrylate) (PMMA) and deuterated PMMA (PMMA) sandwiched between polystyrene (PS) layers exhibited significant increase in mobility near the polymer-polymer interface with decreasing PMMA thickness.
View Article and Find Full Text PDFThe cytoplasmic volume of cells is occupied and crowded by a variety of macromolecules, such as proteins and cytoskeleton structures. Such diverse macromolecules make the cell cytoplasm not only structurally heterogeneous but also dynamically heterogeneous: Some macromolecules may diffuse freely inside cell cytoplasm at certain timescales while others hardly diffuse. Studies on the effects of the dynamic heterogeneity on reaction kinetics have been limited even though the effects of the crowdedness and structural heterogeneity were investigated extensively.
View Article and Find Full Text PDFCell migration, an essential process for normal cell development and cancer metastasis, differs from a simple random walk: the mean-square displacement (〈(Δr)(t)〉) of cells sometimes shows non-Fickian behavior, and the spatiotemporal correlation function (G(r, t)) of cells is often non-Gaussian. We find that this intriguing cell migration should be attributed to heterogeneity in a cell population, even one with a homogeneous genetic background. There are two limiting types of heterogeneity in a cell population: cellular heterogeneity and temporal heterogeneity.
View Article and Find Full Text PDFThe addition of nanoparticles (NPs) to a free-standing polymer film affects the properties of the film such as viscosity and glass transition temperature. Recent experiments, for example, showed that the glass transition temperature of thin polymer films was dependent on how NPs were distributed within the polymer films. However, the spatial arrangement of NPs in free-standing polymer films and its effect on the diffusion of NPs and polymers remain elusive at a molecular level.
View Article and Find Full Text PDFAs practical interest in stretchable electronics increases for future applications in wearables, healthcare, and robotics, the demand for electrical interconnects with high electrical conductivity, durability, printability, and adhesion is growing. Despite the high electrical conductivity and stretchability of most previous interconnects, they lack stable conductivity against strain and adhesion to stretchable substrates, leading to a limitation for their practical applications. Herein, we propose a stretchable conductive adhesive consisting of silver particles with carbon nanotube as an auxiliary filler in silicone adhesives.
View Article and Find Full Text PDF