Streptavidin affinity grids provide strategies to overcome many commonly encountered cryo-electron microscopy (cryo-EM) sample preparation challenges, including sample denaturation and preferential orientations that can occur due to the air-water interface. Streptavidin affinity grids, however, are currently utilized by few cryo-EM labs because they are not commercially available and require a careful fabrication process. Two-dimensional streptavidin crystals are grown onto a biotinylated lipid monolayer that is applied directly to standard holey-carbon cryo-EM grids.
View Article and Find Full Text PDFRecognizing that interaction with the air-water interface (AWI) is a major challenge for cryo-EM, we first review current approaches designed to avoid it. Of these, immobilizing particles on affinity grids is arguably the most promising. In addition, we review efforts to gain more reliable control of the sample thicknesses, not the least important reason being to prevent immobilized particles from coming in contact with the AWI of the remaining buffer.
View Article and Find Full Text PDFWhile many aspects of single-particle electron cryo-microscopy (cryo-EM) of biological macromolecules have reached a sophisticated level of development, this is not yet the case when it comes to preparing thin samples on specimen grids. As a result, there currently is considerable interest in achieving better control of both the sample thickness and the amount of area that is useful, but this is only one aspect in which improvement is needed. This Perspective addresses the further need to prevent the macromolecular particles from making contact with the air-water interface, something that can result in preferential orientation and even structural disruption of macromolecular particles.
View Article and Find Full Text PDFA rapid assay is described, based upon the Marangoni effect, which detects the formation of a denatured-protein film at the air-water interface (AWI) of aqueous samples. This assay requires no more than a 20 µL aliquot of sample, at a protein concentration of no more than1 mg/ml, and it can be performed with any buffer that is used to prepare grids for electron cryo-microscopy (cryo-EM). In addition, this assay provides an easy way to estimate the rate at which a given protein forms such a film at the AWI.
View Article and Find Full Text PDFThe brightness of modern Schottky field-emission guns can produce electron beams that have very high spatial coherence, especially for the weak-illumination conditions that are used for single-particle electron cryo-microscopy in structural biology. Even so, many users have observed defocus-dependent Thon-ring fading that has led them to restrict their data collection strategy to imaging with relatively small defocus values. In this paper, we reproduce the observation of defocus-dependent Thon-ring fading and produce a quantitative analysis and clear explanation of its causes.
View Article and Find Full Text PDFBlotting has been the standard technique for preparing aqueous samples for single-particle electron cryo-microscopy for over three decades. This technique removes the excess solution from a transmission electron microscope grid by pressing absorbent filter paper against the specimen before vitrification. However, this standard technique produces vitreous ice with inconsistent thickness from specimen to specimen and from region to region within the same specimen, the reasons for which are not understood.
View Article and Find Full Text PDFDespite significant advances in all aspects of single particle cryo-electron microscopy (cryo-EM), specimen preparation still remains a challenge. During sample preparation, macromolecules interact with the air-water interface, which often leads to detrimental effects such as denaturation or adoption of preferred orientations, ultimately hindering structure determination. Randomly biotinylating the protein of interest (for example, at its primary amines) and then tethering it to a cryo-EM grid coated with two-dimensional crystals of streptavidin (acting as an affinity surface) can prevent the protein from interacting with the air-water interface.
View Article and Find Full Text PDFThe self-assembly of micellar structures from diblock polymers that contain hydrophilic and hydrophobic domains has been of great interest for the encapsulation of drugs and other hydrophobic molecules. While most commercially used surfactants are derived from hydrocarbon sources, there have been recent efforts to replace these with biodegradable, nontoxic, biologically synthesized alternatives. Previous examples have primarily examined naturally occurring self-assembling proteins, such as silk and elastin-like sequences.
View Article and Find Full Text PDFSamples prepared for single-particle electron cryo-microscopy (cryo-EM) necessarily have a very high surface-to-volume ratio during the short period of time between thinning and vitrification. During this time, there is an obvious risk that macromolecules of interest may adsorb to the air-water interface with a preferred orientation, or that they may even become partially or fully unfolded at the interface. In addition, adsorption of macromolecules to an air-water interface may occur even before thinning.
View Article and Find Full Text PDFAnalysis of images of biotinylated Escherichia coli 70S ribosome particles, bound to streptavidin affinity grids, demonstrates that the image-quality of particles can be predicted by the image-quality of the monolayer crystalline support film. The quality of the Thon rings is also a good predictor of the image-quality of particles, but only when images of the streptavidin crystals extend to relatively high resolution. When the estimated resolution of streptavidin was 5Å or worse, for example, the ribosomal density map obtained from 22,697 particles went to only 9.
View Article and Find Full Text PDFWe describe a rapid and convenient method of growing streptavidin (SA) monolayer crystals directly on holey-carbon EM grids. As expected, these SA monolayer crystals retain their biotin-binding function and crystalline order through a cycle of embedding in trehalose and, later, its removal. This fact allows one to prepare, and store for later use, EM grids on which SA monolayer crystals serve as an affinity substrate for preparing specimens of biological macromolecules.
View Article and Find Full Text PDFPoor consistency of the ice thickness from one area of a cryo-electron microscope (cryo-EM) specimen grid to another, from one grid to the next, and from one type of specimen to another, motivates a reconsideration of how to best prepare suitably thin specimens. Here we first review the three related topics of wetting, thinning, and stability against dewetting of aqueous films spread over a hydrophilic substrate. We then suggest that the importance of there being a surfactant monolayer at the air-water interface of thin, cryo-EM specimens has been largely underappreciated.
View Article and Find Full Text PDFTilted electron microscope images are routinely collected for an ab initio structure reconstruction as a part of the Random Conical Tilt (RCT) or Orthogonal Tilt Reconstruction (OTR) methods, as well as for various applications using the "free-hand" procedure. These procedures all require identification of particle pairs in two corresponding images as well as accurate estimation of the tilt-axis used to rotate the electron microscope (EM) grid. Here we present a computational approach, PCT (particle correspondence from tilted pairs), based on tilt-invariant context and projection matching that addresses both problems.
View Article and Find Full Text PDFVP1 is the major coat protein of murine polyomavirus and forms virus-like particles (VLPs) in vitro. VLPs consist of 72 pentameric VP1 subunits held together by a terminal clamp structure that is further stabilized by disulfide bonds and chelation of calcium ions. Yeast-derived VLPs (yVLPs) assemble intracellularly in vivo during recombinant protein production.
View Article and Find Full Text PDFChemical biotinylation of protein complexes followed by binding to two-dimensional (monolayer) crystals of streptavidin is shown to be an effective way to prepare cryo-EM specimens from samples at low protein concentration. Three different multiprotein complexes are used to demonstrate the generality of this method. In addition, native thermosomes, purified from Sulfolobus solfataricus P2, are used to demonstrate that a uniform distribution of Euler angles is produced, even though this particle is known to adopt a preferred orientation when other methods of cryo-EM specimen preparation are used.
View Article and Find Full Text PDFThe goal of this study is to evaluate the performance of software for automated particle-boxing, and in particular the performance of a new tool (TextonSVM) that recognizes the characteristic texture of particles of interest. As part of a high-throughput protocol, we use human editing that is based solely on class-average images to create final data sets that are enriched in what the investigator considers to be true-positive particles. The Fourier shell correlation (FSC) function is then used to characterize the homogeneity of different single-particle data sets that are derived from the same micrographs by two or more alternative methods.
View Article and Find Full Text PDFVisual proteomics attempts to generate molecular atlases by providing the position and angular orientation of protein complexes inside of cells. This is accomplished by template matching (pattern recognition), a cross-correlation-based process that matches the structure of a specific protein complex to the densities of the whole volume or subvolume of a cell, that is typically acquired by cryoelectron tomography. Thereby, a search is performed that scans the entire volume for structural templates contained in a database.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2009
An unbiased survey has been made of the stable, most abundant multi-protein complexes in Desulfovibrio vulgaris Hildenborough (DvH) that are larger than Mr approximately 400 k. The quaternary structures for 8 of the 16 complexes purified during this work were determined by single-particle reconstruction of negatively stained specimens, a success rate approximately 10 times greater than that of previous "proteomic" screens. In addition, the subunit compositions and stoichiometries of the remaining complexes were determined by biochemical methods.
View Article and Find Full Text PDFA double lipid bilayer structure containing opposing tetramers of AQP0 aquaporin, in contact through extracellular face loop regions, was recently modeled using an intermediate-resolution map obtained by electron crystallographic methods. The pores of these water channels were found to be critically narrow in three regions and subsequently interpreted to be those of a closed state of the channel. The subsequent determination of a high-resolution AQP0 tetramer structure by X-ray crystallographic methods yielded a pore model featuring two of the three constrictions as noted in the EM work and water molecules within the channel pore.
View Article and Find Full Text PDFA calmodulin (CaM)-like protein (hCLP) is expressed in human mammary epithelial cells but appears to be limited to certain epithelial cells such as those found in skin, prostate, breast and cervical tissues. A decrease in the expression of this protein is associated with the occurrence of tumors in breast epithelium. The structure of hCLP determined to 1.
View Article and Find Full Text PDF