Publications by authors named "Bong Ki Min"

Article Synopsis
  • * The hydrogel showed excellent biocompatibility and mechanical properties, with a highly porous structure that enhances its ability to support bone growth and healing in lab tests.
  • * This innovative approach combines the benefits of its components to offer a promising solution for treating complex bone defects, paving the way for potential clinical applications in the future.
View Article and Find Full Text PDF

MnO-based materials have limited capacity and poor conductivity over various voltages, hampering their potential for energy storage applications. This work proposes a novel approach to address these challenges. A self-oriented multiple-electronic structure of a 1D-MnO-nanorod/2D-MnO-nanosphere composite was assembled on 2D-graphene oxide nanosheet/1D-carbon nanofiber (GO/CNF) hybrids.

View Article and Find Full Text PDF

Unlike vertebrates, the number of toothed taxa in invertebrates is very few, with leeches being the only tooth-bearing organisms in the phylum Annelida. Copious studies have been conducted regarding vertebrate teeth; however, studies regarding the structure and function of invertebrate teeth are limited. In this study, the tooth structure of leeches, specifically and , was revealed, which showed sharp and pointed teeth along the apex of three jaws.

View Article and Find Full Text PDF

Glomerular epithelial protein-1 (Glepp1), a R3 subtype family of receptor-type protein tyrosine phosphatases, plays important role in the activation of Src family kinases and regulates cellular processes such as cell proliferation, differentiation, and apoptosis. In this study, we firstly examined the functional evaluation of Glepp1 in tooth development and morphogenesis. The precise expression level and developmental function of Glepp1 were examined by RT-qPCR, in situ hybridization, and loss and gain of functional study using a range of in vitro organ cultivation methods.

View Article and Find Full Text PDF

To understand the mechanisms underlying tooth morphogenesis, we examined the developmental roles of important posttranslational modification, O-GlcNAcylation, which regulates protein stability and activity by the addition and removal of a single sugar (O-GlcNAc) to the serine or threonine residue of the intracellular proteins. Tissue and developmental stage-specific immunostaining results against O-GlcNAc and O-GlcNAc transferase (OGT) in developing tooth germs would suggest that O-GlcNAcylation is involved in tooth morphogenesis, particularly in the cap and secretory stage. To evaluate the developmental function of OGT-mediated O-GlcNAcylation, we employed an in vitro tooth germ culture method at E14.

View Article and Find Full Text PDF

In the context of biology and medicine, nanotechnology encompasses the materials, devices, and systems whose structure and function are relevant for small length scales, from nanometers through microns. The purpose of this study was to compare the microstructures and resultant biocompatibility of three commercially available soft milled cobalt-chromium (Co-Cr) alloys (Ceramill Sintron, CS; Sintermetall, SML; and Soft Metal, SM). Disc-shaped specimens were prepared by milling the soft blanks and subsequent post-sintering.

View Article and Find Full Text PDF

Self-assembled nano-layering resulting from combined ionic and hydrogen-bonding interactions of phosphate functional monomers with zirconia have been proposed. The purpose of this study was to investigate the bond strengths of two phosphate monomer-containing adhesive resin cements (Panavia F 2.0 and RelyX U200) to a conventional tetragonal zirconia (Lava Plus, LP) and a new cubic zirconia (Lava Esthetic, LE), with three different shade zones, after air-abrasion.

View Article and Find Full Text PDF

The influence of residual stress induced by sandblasting the zirconia ceramic surface on the resin bonding to the ceramic is still unclear. The effect of four different sandblasting conditions (with 50 and 110 μm alumina at pressures of 0.2 and 0.

View Article and Find Full Text PDF

Titanium nitride (TiN) was deposited on the surface of a cobalt-chromium (Co-Cr) alloy by a hot-wall type chemical vapor deposition (CVD) reactor at 850 °C, and the coating characteristics were compared with those of a physical vapor deposition (PVD) TiN coating deposited on the same alloy at 450 °C. Neither coating showed any reactions at the interface. The face-centered cubic (fcc) structure of the alloy was changed into a hexagonal close-packed (hcp) phase, and recrystallization occurred over at 10 μm of depth from the surface after CVD coating.

View Article and Find Full Text PDF

A new effective oxidative solution for titanium (Ti) surface etching was recently developed. The present study was aimed at determining the influence of shorter (than 240 min) treatment time on the surface characteristics of the Ti nano/micro hierarchical structures. Cylinder-shaped Ti grade 5 alloys were etched for 30, 60, 120, and 240 min at room temperature and cleaned successively with acetone, ethanol, and distilled water in an ultrasonic bath.

View Article and Find Full Text PDF

Statement Of Problem: Few studies have investigated changes in the marginal fit of metal-ceramic restorations fabricated by selective laser melting (SLM) techniques after the application of veneering ceramic.

Purpose: The purpose of this in vitro study was to evaluate the marginal fit (silicone replica technique) and internal porosity (cross-section analysis) of cobalt-chromium (Co-Cr) alloy metal crowns prepared by using 2 SLM processes together with a casting technique before and after ceramic veneering.

Material And Methods: Cast single Co-Cr crowns and SLM-processed crowns with large (SLML) or small (SLMS) porosity were prepared (n=20/group), and half were subjected to ceramic veneering.

View Article and Find Full Text PDF

In this study, we investigated the effect of sintering temperature (1300, 1350, or 1400 °C) and holding time (1 or 2 h) on the mechanical properties of a cobalt-chromium (Co-Cr) alloy (Soft Metal) produced by milling/post-sintering, using a tensile test ( = 6). Prior to the test, the different nanostructures arising from the sintering conditions were also analyzed. The phase ratio of (face-centered cubic) phase to (hexagonal close-packed) phase increased mainly with increasing temperature.

View Article and Find Full Text PDF

Recently, a simple surface modification treatment of titanium (Ti) was developed to produce nano-and micro-scale features on the surfaces via simple immersion in an oxidative aqueous solution (30% hydrogen peroxide/5% sodium bicarbonate). However, this treatment method of Ti surfaces requires a relatively long immersion time (4 h) in the oxidative solution. In this study, we investigated whether an increase in the temperature of the oxidative etching solution can shorten the immersion time of Ti effectively.

View Article and Find Full Text PDF

Self-assembled monolayers of thiols have been used to link a range of materials to planar gold surfaces or gold nanoparticles in nanoscience and nanotechnology. Novel mercapto silane systems are a promising alternative to dental noble metal alloys for enhanced resin bonding durability Goldbased alloys for full-cast restorations contain various base metal elements, which may bond to acidic functional monomers chemically, in addition to noble metal elements. This study examined how the additional incorporation of a phosphate monomer (di-2-hydroxyethyl methacryl hydrogenphosphate, DHP) into novel mercapto silane primer systems affected the resin bond strength to a type IV gold alloy pretreated with the primers.

View Article and Find Full Text PDF

This paper reports a simple, biogenic and green approach to obtain narrow band gap and visible light-active TiO nanoparticles. Commercial white TiO (w-TiO) was treated in the cathode chamber of a Microbial Fuel Cell (MFC), which produced modified light gray TiO (g-TiO) nanoparticles. The DRS, PL, XRD, EPR, HR-TEM, and XPS were performed to understand the band gap decline of g-TiO.

View Article and Find Full Text PDF

The microstructures and mechanical properties of cobalt-chromium (Co-Cr) alloys produced by three CAD/CAM-based processing techniques were investigated in comparison with those produced by the traditional casting technique. Four groups of disc- (microstructures) or dumbbell- (mechanical properties) specimens made of Co-Cr alloys were prepared using casting (CS), milling (ML), selective laser melting (SLM), and milling/post-sintering (ML/PS). For each technique, the corresponding commercial alloy material was used.

View Article and Find Full Text PDF

Over the history of carbon, it is generally acknowledged that Bernal AB stacking of the sp carbon layers is the unique crystalline form of graphite. The universal graphite structure is synthesized at 2,600~3,000 °C and exhibits a micro-polycrystalline feature. In this paper, we provide evidence for a metastable form of graphite with an AA' structure.

View Article and Find Full Text PDF

Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured.

View Article and Find Full Text PDF

Zinc oxide (ZnO) nanoparticles (NPs) anchored to carbon nanofiber (CNF) hybrids were synthesized using a facile coprecipitation method. This report demonstrates an effective strategy to intrinsically improve the conductivity and supercapacitive performance of the hybrids by inducing oxygen vacancies. Oxygen deficiency-related defect analyses were performed qualitatively as well as quantitatively using Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy.

View Article and Find Full Text PDF

This study investigated whether different storage conditions of plasma-treated zirconia specimens affect the shear bond strength of veneering porcelain. Zirconia plates were treated with a non-thermal atmospheric argon plasma (200 W, 600 s). Porcelain veneering (2.

View Article and Find Full Text PDF

Manganese oxides are one of the most valuable materials for batteries, fuel cells and catalysis. Herein, we report the change in morphology and phase of as-synthesized Mn2O3 by inserting Na(+) ions. In particular, Mn2O3 nanoparticles were first transformed to 2 nm thin Na0.

View Article and Find Full Text PDF

Pure and Sm-doped ZnO nanoparticles were synthesized applying a simple sonochemical method. The nanocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) techniques which confirmed the successful synthesis of the doped sonocatalyst. The sonocatalytic degradation of Acid Blue 92 (AB92), a model azo dye, was more than that with sonolysis alone.

View Article and Find Full Text PDF

A facile three-step co-precipitation method is developed to synthesize graphitic carbon nanofibers (CNFs) decorated with ZnO nanoparticles (NPs). By interchanging intermediate steps of the reaction processes, two kinds of nanohybrids are fabricated with stark morphological and physicochemical differences. The morphologies differ because of the different chemical environments of the NP/nanocluster formation.

View Article and Find Full Text PDF

One-dimensional (1D) and two-dimensional (2D) titania/titanate nanostructures are fabricated directly on a self-source metallic titanium (Ti) surface via in situ surface re-construction of a Ti substrate using potassium hydroxide (KOH) under a hydrothermal (HT) condition. The effect of temperature and the concentration of KOH on the variations in morphology and titania-to-titanate phase changes are studied and explained in detail. A growth model is proposed for the formation process of the platelet-to-nanorod conversion mechanism.

View Article and Find Full Text PDF

A low temperature sputter deposition process is adopted to fabricate nanocrystalline ZnO thin films on plastic (polyethylene terepthalate) substrate. Very good crystalline films are synthesized at a substrate temperature around 120 degrees C. Structural and microstructural analyses confirm the proper phase formation of the nanomaterial with an average nanoparticle size around 5-10 nm.

View Article and Find Full Text PDF