Publications by authors named "Bong K Oh"

Background/aims: Epigenetic regulations play a role in the development and progression of cancer. Therefore, discovering novel epigenetically regulated genes could provide useful information in understanding cancer. Lamin A/C is an intermediate filament protein whose expression is reported to be suppressed in tissues of gastro-intestinal malignancies.

View Article and Find Full Text PDF

Nitric oxide (NO) has been shown to exhibit significant anti-platelet activity and its release from polymer matrices has been already utilized to increase the biocompatibility of various blood-contacting devices. Herein, details of a new synthetic approach for preparing NO-releasing diazeniumdiolated polyurethanes (PU) are described. The method's utility is demonstrated by the incorporation of methoxymethyl- or sugar-protected pre-formed diazeniumdiolate moieties directly into chain extender diols which are then incorporated into the polyurethane backbone.

View Article and Find Full Text PDF

We investigated the biological role of thymidine phosphorylase (TP), an angiogenic factor, in gastric cancer cell migration and invasion and explored a therapeutic approach for high TP-expressing tumors using TP enzymatic inhibitor (TPI) and rapamycin. We established TP cDNA overexpressing gastric cancer cell lines (MKN-45/TP and YCC-3/TP) and did invasion and adhesion assays with Matrigel-coated transwell membranes. The related signal pathway using recombinant human TP (rhTP), deoxy-d-ribose (D-dRib), and signal pathway inhibitors (wortmannin, LY294002, and rapamycin) was investigated.

View Article and Find Full Text PDF

Two novel strategies for synthesizing stable polyurethanes (PUs) capable of generating bioactive nitric oxide (NO) are described. The methods rely on covalently attaching diazeniumdiolate (N(2)O(2)(-)) groups onto secondary amine nitrogens at various positions within the polymer chain such that, when in contact with water or physiological fluids, only the two molecules of NO available from each diazeniumdiolate moiety are released into the surrounding medium, with potential byproducts remaining covalently bound to the matrix. Extensive analysis of the NO(x)() products released from the polymers was employed to develop appropriate strategies to better stabilize the diazeniumdiolate-based polymer structures.

View Article and Find Full Text PDF

A planar ultramicroelectrode nitric oxide (NO) sensor was fabricated to measure the local NO surface concentrations from NO-releasing microarrays of varying geometries. The sensor consisted of platinized Pt (25 microm) working electrode and a silver paint reference electrode coated with a thin silicone rubber gas permeable membrane. An internal hydrogel layer separated the Pt working electrode and gas permeable membrane.

View Article and Find Full Text PDF
Article Synopsis
  • An enzyme-based glucose biosensor uses a modified xerogel microarray to release nitric oxide (NO) and improve sensitivity to glucose.
  • The biosensor features glucose oxidase (GOx) embedded in a protective methyltrimethoxysilane (MTMOS) layer, with polyurethane coatings that prevent enzyme loss and enhance glucose selectivity.
  • Micropatterned design facilitates effective NO release while maintaining GOx activity, effectively reducing bacterial adhesion and promoting stability in glucose detection.
View Article and Find Full Text PDF

[reaction: see text] The synthesis and characterization of a series of symmetric bis-dialkyldiamine-based diazeniumdiolates, RN[N(O)NO(-)Na(+)](CH(2))(x)()N[N(O)NO(-)Na(+)]R', are reported. Preparation of corresponding intramolecular diazeniumdiolates of the form RN[N(O)NO](-)(CH(2))(x)()NH(2)(+)R' with alkyl groups > (CH(2))(4)CH(3) have been shown previously to lack stability. In contrast, sodium-stabilized bis-diazeniumdiolates of such lipophilic species can be readily formed when these same diamines are reacted with NO in basic media.

View Article and Find Full Text PDF

The direct amperometric detection of S-nitrosothiol species (RSNOs) is realized by modifying a previously reported amperometric nitric oxide gas sensor with thin hydrophilic polyurethane films containing catalytic Cu(II)/(I) sites. Catalytic Cu(II)/(I)-mediated decomposition of S-nitrosothiols generates NO(g) in the thin polymeric film at the distal tip of the NO sensor. Three different species are examined to create the catalytic layer: (1) a lipophilic Cu(II)-ligand complex; (2) Cu(II)-phosphate salt; and (3) small (3-microm) metallic Cu(0) particles.

View Article and Find Full Text PDF

An improved miniature amperometric nitric oxide sensor design with a planar sensing tip (ranging from 150 microm to 2 mm in diameter) is reported. The sensor is fabricated using a platinized platinum anode and a Ag/AgCl cathode housed behind a microporous poly(tetrafluoroethylene) (PTFE; Gore-tex) gas-permeable membrane. Platinization of the working platinum electrode surface dramatically improves the analytical performance of the sensor by providing approximately 10-fold higher sensitivity (0.

View Article and Find Full Text PDF

A novel approach potentially useful for the development of more thromboresistant polymeric materials is examined. The method is based on the catalytic generation of nitric oxide (NO) via Cu(I) mediated reduction of nitrite ions. Preliminary solution phase studies demonstrate that ascorbate or thiolate anions can generate Cu(I) from Cu(II) with subsequent catalytic conversion of any nitrite ions present to NO by the unstable Cu(I) species.

View Article and Find Full Text PDF

A new approach for preparing potentially more blood-compatible nitric oxide (NO)-generating polymeric materials is described. The method involves creating polymeric films that have catalytic sites within (lipophilic copper(II) complex) that are capable of converting endogenous S-nitrosothiols present in blood (S-nitrosoglutathione (GSNO), S-nitrosocysteine (CysNO), etc.) to NO.

View Article and Find Full Text PDF