As global freshwater shortages worsen, solar steam generation (SSG) emerges as a promising, eco-friendly, and cost-effective solution for water purification. However, widespread SSG implementation requires efficient photothermal materials and solar evaporators that integrate enhanced light-to-heat conversion, rapid water transportation, and optimal thermal management. This study investigates using nonoxidized graphene flakes (NOGF) with negligible defects as photothermal materials capable of absorbing over 98% of sunlight.
View Article and Find Full Text PDFIntroduction: The geriatric nutritional risk index (GNRI) can easily identify malnutrition-associated morbidity and mortality. We investigated the association between preoperative GNRI and 30-d mortality in geriatric burn patients who underwent surgery.
Methods: The study involved geriatric burn patients (aged ≥ 65 y) who underwent burn surgery between 2012 and 2022.
Solar heating and radiative cooling are promising solutions for decreasing global energy consumption because these strategies use the Sun (≈5800 K) as a heating source and outer space (≈3 K) as a cooling source. Although high-performance thermal management can be achieved using these eco-friendly methods, they are limited by daily temperature fluctuations and seasonal changes because of single-mode actuation. Herein, reversible solar heating and radiative cooling devices formed via the mechanically guided assembly of 3D architectures are demonstrated.
View Article and Find Full Text PDFMicrosyst Nanoeng
October 2023
For simultaneous and quantitative thermophysical measurements of ultrasmall liquid volumes, we have recently developed and reported heated fluidic resonators (HFRs). In this paper, we improve the precision of HFRs in a vacuum by significantly reducing the thermal loss around the sensing element. A vacuum chamber with optical, electrical, and microfluidic access is custom-built to decrease the convection loss by two orders of magnitude under 10 mbar conditions.
View Article and Find Full Text PDFThermal homeostasis is an essential physiological function for preserving the optimal state of complex organs within the human body. Inspired by this function, here, we introduce an autonomous thermal homeostatic hydrogel that includes infrared wave reflecting and absorbing materials for improved heat trapping at low temperatures, and a porous structure for enhanced evaporative cooling at high temperatures. Moreover, an optimized auxetic pattern was designed as a heat valve to further amplify heat release at high temperatures.
View Article and Find Full Text PDFWe experimentally demonstrate boosted in-plane thermal conduction by surface plasmon polaritons (SPPs) propagating along a thin Ti film on a glass substrate. Due to the lossy nature of metal, SPPs can propagate over centimeter-scale distances even along a supported metal film, and the resulting ballistic heat conduction can be quantitatively validated. Further, for a 100-nm-thick Ti film on a glass substrate, a significant enhancement of in-plane thermal conductivity compared to bulk value (∼25%) is experimentally shown.
View Article and Find Full Text PDFThe thermal management of semiconductors at the device level has become a crucial issue owing to the high integration density and miniaturization of microelectronic systems. Because surface phonon polaritons (SPhPs) exhibit long propagation lengths, they are expected to contribute significantly to the heat dissipation in microelectronic systems. This study aims to numerically estimate the heat transfer due to SPhPs in a thin SiO film.
View Article and Find Full Text PDFMicro/nanochannel resonators have been used to measure cells, suspended nanoparticles, or liquids, primarily at or near room temperature while their high temperature operation can offer promising applications such as calorimetric measurements and thermogravimetric analysis. To date, global electrothermal or local photothermal heating mechanisms have been attempted for channel resonators, but both approaches are intrinsically limited by a narrow temperature modulation range, slow heating/cooling, less quantitative heating, or time-consuming optical alignment. Here, we introduce heater-integrated fluidic resonators (HFRs) that enable fast, quantitative, alignment-free, and wide-range temperature modulation and simultaneously offer resistive thermometry and resonant densitometry.
View Article and Find Full Text PDFEmpty space in germanium (ESG) or germanium-on-nothing (GON) are unique self-assembled germanium structures with multiscale cavities of various morphologies. Due to their simple fabrication process and high-quality crystallinity after self-assembly, they can be applied in various fields including micro-/nanoelectronics, optoelectronics, and precision sensors, to name a few. In contrast to their simple fabrication, inspection is intrinsically difficult due to buried structures.
View Article and Find Full Text PDFBackground: postoperative atelectasis is a significant clinical problem during thoracic surgery with one-lung ventilation. Intraoperative deep neuromuscular blockade can improve surgical conditions, but an increased risk of residual paralysis may aggravate postoperative atelectasis. Every patient was verified to have full reversal before extubation.
View Article and Find Full Text PDFObjective: Lung sonography can be helpful to determine the position of a left-sided double-lumen tube (DLT). However, clinical experience is required for correct assessment. We investigated whether lung sonography can improve the diagnostic efficacy of determining the DLT position in novices and experts.
View Article and Find Full Text PDFPassive radiative cooling functions by reflecting the solar spectrum and emitting infrared waves in broadband or selectively. However, cooling enclosed spaces that trap heat by greenhouse effect remains a challenge. We present a emitter (ET) consisting of an Ag-polydimethylsiloxane layer on micropatterned quartz substrate.
View Article and Find Full Text PDFRecently, plasmonic nanofluids (i.e., a suspension of plasmonic nanoparticles in a base fluid) have been widely employed in direct-absorption solar collectors because the localized surface plasmon supported by plasmonic nanoparticles can greatly improve the direct solar thermal conversion performance.
View Article and Find Full Text PDFPurpose: The effects of dexmedetomidine on locomotor function and thermal hyperalgesia in sciatic nerve crush injury (SNCI) were investigated using rats.
Methods: After exposing the right sciatic nerve, the sciatic nerve was crushed for 1 minute by a surgical clip. One day after nerve injury, dexmedetomidine (5, 25, and 50 µg/kg) was directly applied to the injured sciatic nerve once a day for 14 days.
Due to their ability to confine light in a sub-wavelength scale and achieve coherent absorption, plasmonic nanostructures have been intensively studied for solar energy harvesting. Although nanoparticles generating localized surface plasmon resonance (LSPR) have been thoroughly studied for application in a direct absorption solar collector (DASC), nanoparticles exciting magnetic polaritons (MP) for use in a DASC have not drawn much attention. In this work, we report a metal-insulator-metal (MIM) nanodisk that can excite MP peaks apart from the LSPR in the solar spectrum.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
Daytime radiative coolers are used to pump excess heat from a target object into a cold exterior space without energy consumption. Radiative coolers have become attractive cooling options. In this study, a daytime radiative cooler was designed to have a selective emissive property of electromagnetic waves in the atmospheric transparency window of 8-13 μm and preserve low solar absorption for enhancing radiative cooling performance.
View Article and Find Full Text PDFInt J Environ Res Public Health
January 2020
In South Korea, the installation of septic tanks for treating black water (STBW) is regulated even in sewage treatment areas to prevent the black water deposition in combined sewers. STBWs in which black water is anaerobically decomposed generate high concentrations of hydrogen sulfide (HS). In this study, an immobilized media of sulfur-oxidizing bacteria (SOB) was used to remove the HS.
View Article and Find Full Text PDF: For using appropriate goal-directed fluid therapy during the surgical conditions of pneumoperitoneum in the reverse Trendelenburg position, we investigated the predictability of various hemodynamic parameters for fluid responsiveness by using a mini-volume challenge test. : 42 adult patients scheduled for laparoscopic cholecystectomy were enrolled. After general anesthesia was induced, CO pneumoperitoneum was applied and the patient was placed in the reverse Trendelenburg position.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2020
Anisotropic small structures found throughout living nature have unique functionalities as seen by Gecko lizards. Here, we present a simple yet programmable method for fabricating anisotropic, submicrometer-sized bent pillar structures using photoreconfiguration of an azopolymer. A slant irradiation of a p-polarized light on the pillar structure of an azopolymer simply results in a bent pillar structure.
View Article and Find Full Text PDFThis paper reports micropipette resonators, mechanical resonator-integrated micropipettes, which enable selective aspiration and mass measurement of particles or cells suspended in liquids with two orthogonal vibration modes. A custom pipette pulling system is built to provide power-modulated linear heating on a rotating glass capillary to make an asymmetric cross section with extended uniformity.A glass capillary is stretched with the custom puller, cut within the pulled region, polished, mounted on a machined metallic jig, and then coated with a metal.
View Article and Find Full Text PDFIn using nanostructures to design solar thermal absorbers, computational methods, such as rigorous coupled-wave analysis and the finite-difference time-domain method, are often employed to simulate light-structure interactions in the solar spectrum. However, those methods require heavy computational resources and CPU time. In this study, using a state-of-the-art modeling technique, i.
View Article and Find Full Text PDFLiquid metals are one of the most interesting and promising materials due to their electrical, fluidic, and thermophysical properties. With the aid of their exceptional deformable natures, liquid metals are now considered to be electrically conductive materials for sensors and actuators, major constituent transducers in soft robotics, that can experience and withstand significant levels of mechanical deformation. For the upcoming era of wearable electronics and soft robotics, we would like to offer an up-to-date overview of liquid metal-based soft (thus significantly deformable) sensors mainly but not limited to researchers in relevant fields.
View Article and Find Full Text PDF