Appl Microbiol Biotechnol
January 2024
Transcription factor-based bioreporters have been extensively studied for monitoring and detecting environmental toxicants. In Escherichia coli, the multiple antibiotic resistance regulator (MarR) induces transcription upon binding to salicylic acid (SA). We generated SA-specific E.
View Article and Find Full Text PDFFlavonoid -glucosides, which are found in several plant families, are characterized by several biological properties, including antioxidant, anticancer, anti-inflammatory, neuroprotective, hepatoprotective, cardioprotective, antibacterial, antihyperalgesic, antiviral, and antinociceptive activities. The biosynthetic pathway of flavonoid -glucosides in plants has been elucidated. In the present study, a pathway was introduced to to synthesize four flavonoid -glucosides, namely, isovitexin, vitexin, kaempferol 6--glucoside, and kaempferol 8--glucoside.
View Article and Find Full Text PDFBacterial cell-based biosensors have been widely developed for detecting environmental toxic materials. The -operon in is a Zn(II)-responsive genetic system and is employed in Zn(II), Cd(II), and Hg(II)-sensing biosensors. In this study, point mutations were introduced in the regulatory protein ZntR to modulate its target selectivity, and metal ion-exporting genes, such as and , in host cells were deleted to increase cellular metal ion levels and enhance specificity.
View Article and Find Full Text PDFAim: Chlorogenic acid and p-coumaroyl shikimate are hydroxycinnamic acid derivatives. These compounds are nutraceutical supplements due to their biological activities including prevention of cardiovascular disease and cancers. These two compounds were synthesized in Escherichia coli through two-culture system using two mutants, which are biochemically interdependent.
View Article and Find Full Text PDFGenistein is a type of isoflavonoid found predominantly in leguminous plants. Genistein has diverse biological activities, such as anthelmintic and antioxidant effects, as well as inhibitory effects on the growth of several cancers. In addition, genistein is well known as a phytoestrogen.
View Article and Find Full Text PDFBacterial cell-based biosensors, or whole-cell bioreporters (WCBs), are an alternative tool for the quantification of hazardous materials. Most WCBs share similar working mechanisms. In brief, the recognition of a target by sensing domains induces a biological event, such as changes in protein conformation or gene expression, providing a basis for quantification.
View Article and Find Full Text PDFBackground: Acridone alkaloids are heterocyclic compounds that exhibit a broad-range of pharmaceutical and chemotherapeutic activities, including anticancer, antiviral, anti-inflammatory, antimalarial, and antimicrobial effects. Certain plant species such as Citrus microcarpa, Ruta graveolens, and Toddaliopsis bremekampii synthesize acridone alkaloids from anthranilate and malonyl-CoA.
Results: We synthesized two acridones in Escherichia coli.
Appl Microbiol Biotechnol
March 2020
Despite the known hazardous effects of antimony (Sb) on human health, Sb monitoring biosensors have not been as actively investigated as arsenic (As) biosensors. Whole-cell bioreporters (WCBs) employing an arsenic-responsive operon and a regulatory protein (ArsR) are reportedly capable of monitoring arsenite, arsenate, and antimonite. However, the potential of WCBs as Sb biosensors has been largely ignored.
View Article and Find Full Text PDFJ Microbiol Biotechnol
October 2019
Two hydroxybenzoyl amines, 4-hydroxybenzoyl tyramine (4-HBT) and -2-hydroxybenzoyl tryptamine (2-HBT), were synthesized using . While 4-HBT was reported to demonstrate anti-atherosclerotic activity, 2-HBT showed anticonvulsant and antinociceptive activities. We introduced genes chorismate pyruvate-lyase (), tyrosine decarboxylase (), isochorismate synthase (), isochorismate pyruvate lyase (), and tryptophan decarboxylase () for each substrate, 4-hydroxybenzoic acid (4-HBA), tyramine, 2-hydroxybenzoic acid (2-HBA), and tryptamine, respectively, in .
View Article and Find Full Text PDFJ Microbiol Biotechnol
June 2019
Anthranilate derivatives have been used as flavoring and fragrant agents for a long time. Recently, these compounds are gaining attention due to new biological functions including antinociceptive and analgesic activities. Three anthranilate derivatives, -methylanthranilate, methyl anthranilate, and methyl -methylanthranilate were synthesized using metabolically engineered stains of .
View Article and Find Full Text PDFAppl Microbiol Biotechnol
June 2018
Despite the large number of bioreporters developed to date, the ability to detect heavy metal(loid)s with bioreporters has thus far been limited owing to the lack of appropriate genetic systems. We here present a novel approach to modulate the selectivity and sensitivity of microbial whole-cell bioreporters (WCBs) for sensing metal(loid)s via the znt-operon from Escherichia coli, which were applied to quantify the bioavailability of these contaminants in environmental samples. The WCB harboring the fusion gene zntAp::egfp was used as a microbial metal(loid) sensor, which was turned on by the interaction between ZntR and metal(loid) ions.
View Article and Find Full Text PDFBackground: Hydroxycinnamoyl anthranilates, also known as avenanthramides (avns), are a group of phenolic alkaloids with anti-inflammatory, antioxidant, anti-itch, anti-irritant, and antiatherogenic activities. Some avenanthramides (avn A-H and avn K) are conjugates of hydroxycinnamic acids (HC), including p-coumaric acid, caffeic acid, and ferulic acid, and anthranilate derivatives, including anthranilate, 4-hydroxyanthranilate, and 5-hydroxyanthranilate. Avns are primarily found in oat grain, in which they were originally designated as phytoalexins.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
February 2018
Metals are essential to all organisms; accordingly, cells employ numerous genes to maintain metal homeostasis as high levels can be toxic. In the present study, the gene operons responsive to metal(loid)s were employed to generate bacterial cell-based biosensors to detect target metal(loid)s. The cluster of genes related to copper transport known as the cop-operon is regulated by the interaction between the copA promoter region (copAp) and CueR, turning on and off gene expression upon copper ion binding.
View Article and Find Full Text PDFIn , the transcription of genes related to metal homeostasis is activated by the presence of target metals. The promoter regions of those genes can be fused with reporter genes to generate whole-cell bioreporters (WCBs); these organisms sense the presence of target metals through reporter gene expression. However, the limited number of available promoters for sensing domains restricts the number of WCB targets.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
November 2017
Plants synthesize various phenol amides. Among them, hydroxycinnamoyl (HC) tryptamines and serotonins exhibit antioxidant, anti-inflammatory, and anti-atherogenic activities. We synthesized HC-tryptamines and HC-serotonin from several HCs and either tryptamine or serotonin using Escherichia coli harboring the 4CL (4-coumaroyl CoA ligase) and CaHCTT [hydroxycinnamoyl-coenzyme A:serotonin N-(hydroxycinnamoyl)transferase] genes.
View Article and Find Full Text PDFMany membrane-associated proteins are involved in various signaling pathways, including the phosphoinositide 3-kinase (PI3K) pathway, which has key roles in diverse cellular processes. Disruption of the activities of these proteins is involved in the development of disease in humans, making these proteins promising targets for drug development. In most cases, the catalytic domain is targeted; however, it is also possible to target membrane associations in order to regulate protein activity.
View Article and Find Full Text PDFBackground: Nucleotide sugars serve as sugar donors for the synthesis of various glycones. The biological and chemical properties of glycones can be altered depending which sugar is attached. Bacteria synthesize unusual nucleotide sugars.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
June 2016
Various flavonoid glycosides are found in nature, and their biological activities are as variable as their number. In some cases, the sugar moiety attached to the flavonoid modulates its biological activities. Flavonoid glycones are not easily synthesized chemically.
View Article and Find Full Text PDFMicrob Cell Fact
October 2015
Background: Hydroxycinnamic acids (HCAs) including cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid, are C6-C3 phenolic compounds that are synthesized via the phenylpropanoid pathway. HCAs serve as precursors for the synthesis of lignins, flavonoids, anthocyanins, stilbenes and other phenolic compounds. HCAs can also be conjugated with diverse compounds including quinic acid, hydroxyl acids, and amines.
View Article and Find Full Text PDFJ Microbiol Biotechnol
September 2015
The flavonoid apigenin and its O-methyl derivative, genkwanin, have various biological activities and can be sourced from some vegetables and fruits. Microorganisms are an alternative for the synthesis of flavonoids. Here, to synthesize genkwanin from tyrosine, we first synthesized apigenin from p-coumaric acid using four genes (4CL, CHS, CHI, and FNS) in Escherichia coli.
View Article and Find Full Text PDFBackground: Coumarins are a major group of plant secondary metabolites that serves as defense compounds against pathogens. Although coumarins can be obtained from diverse plant sources, the use of microorganisms to synthesize them could be an alternative way to supply building blocks for the synthesis of diverse coumarin derivatives.
Results: Constructs harboring two genes, F6'H (encoding feruloyl CoA 6' hydroxylase) and 4CL (encoding 4-coumarate CoA:ligase), were manipulated to increase the productivity of coumarins.
Appl Microbiol Biotechnol
April 2015
Flavonoids are plant secondary metabolites containing several hydroxyl groups that are targets for modification reactions such as methylation and glycosylation. In plants, flavonoids are present as glycones. Although glucose is the most common sugar attached to flavonoids, arabinose, galactose, glucuronic acid, rhamnose, and xylose are also linked to flavonoids.
View Article and Find Full Text PDFMost flavonoids are glycosylated and the nature of the attached sugar can strongly affect their physiological properties. Although many flavonoid glycosides have been synthesized in Escherichia coli, most of them are glucosylated. In order to synthesize flavonoids attached to alternate sugars such as glucuronic acid and galactoside, E.
View Article and Find Full Text PDFJ Microbiol Biotechnol
November 2014
Pinocembrin is a flavonoid that exhibits diverse biological properties. Although the major source of pinocembrin is propolis, it can be synthesized biologically using microorganisms such as Escherichia coli, which has been used to synthesize diverse natural compounds. Pinocembrin is synthesized from phenylalanine by the action of three enzymes; phenylalanine ammonia lyase (PAL), 4-coumarate:CoA ligase (4CL), and chalcone synthase (CHS).
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
August 2014
Flavonoids are ubiquitous phenolic compounds and at least 9,000 have been isolated from plants. Most flavonoids have been isolated and assessed in terms of their biological activities. Microorganisms such as Escherichia coli and Saccharomyces cerevisiae are efficient systems for the synthesis of flavonoids.
View Article and Find Full Text PDF