The use of sewage sludge as a soil improver has been promoted in agroecosystems. However, sludges can contain toxic trace elements because of suboptimal wastewater treatment. Nonetheless, field studies investigating the negative effects of these practices on pollinators are lacking.
View Article and Find Full Text PDFNanoplastic contamination has become an issue of environmental concern but the information on the potential adverse effects of nanoplastics on marine ecosystems is still limited. Therefore, the aim of this work was to investigate the effects of the exposure to polystyrene nanoplastics (PS-NPs; 0.05, 0.
View Article and Find Full Text PDFEchinoderms (starfish, sea-urchins and their close relations) possess a unique type of collagenous tissue that is innervated by the motor nervous system and whose mechanical properties, such as tensile strength and elastic stiffness, can be altered in a time frame of seconds. Intensive research on echinoderm 'mutable collagenous tissue' (MCT) began over 50 years ago, and over 20 years ago, MCT first inspired a biomimetic design. MCT, and sea-cucumber dermis in particular, is now a major source of ideas for the development of new mechanically adaptable materials and devices with applications in diverse areas including biomedical science, chemical engineering and robotics.
View Article and Find Full Text PDFNeuropeptides are one of the largest and most diverse families of signaling molecules in animals and, accordingly, they regulate many physiological processes and behaviors. Genome and transcriptome sequencing has enabled the identification of genes encoding neuropeptide precursor proteins in species from a growing variety of taxa, including bilaterian and non-bilaterian animals. Of particular interest are deuterostome invertebrates such as the phylum Echinodermata, which occupies a phylogenetic position that has facilitated reconstruction of the evolution of neuropeptide signaling systems in Bilateria.
View Article and Find Full Text PDFIn echinoderms, the coelomic epithelium (CE) is reportedly the source of new circulating cells (coelomocytes) as well as the provider of molecular factors such as immunity-related molecules. However, its overall functions have been scarcely studied in detail. In this work, we used an integrated approach based on both microscopy (light and electron) and proteomic analyses to investigate the arm CE in the starfish Marthasterias glacialis during different physiological conditions (i.
View Article and Find Full Text PDFEchinoderms are marine invertebrate deuterostomes known for their amazing regenerative abilities throughout all life stages. Though some species can undergo whole-body regeneration (WBR), others exhibit more restricted regenerative capabilities. Asteroidea (starfish) comprise one of the few echinoderm taxa capable of undergoing WBR.
View Article and Find Full Text PDFMarine biodiversity is expressed through the huge variety of vertebrate and invertebrate species inhabiting intertidal to deep-sea environments. The extraordinary variety of "forms and functions" exhibited by marine animals suggests they are a promising source of bioactive molecules and provides potential inspiration for different biomimetic approaches. This diversity is familiar to biologists and has led to intensive investigation of metabolites, polysaccharides, and other compounds.
View Article and Find Full Text PDFCoelomocytes is the generic name for a collection of cellular morphotypes, present in many coelomate animals, and highly variable among echinoderm classes. The roles attributed to the major types of these free circulating cells present in the coelomic fluid of echinoderms include immune response, phagocytic digestion and clotting. Our main aim in this study was to characterize coelomocytes found in the coelomic fluid of (class Asteroidea) by using a combination of flow cytometry (FC), imaging flow cytometry (IFC) and fluorescence plus transmission electron microscopy (TEM).
View Article and Find Full Text PDFCollagen-based skin-like scaffolds (CBSS) are promising alternatives to skin grafts to repair wounds and injuries. In this work, we propose that the common marine invertebrate sea urchin represents a promising and eco-friendly source of native collagen to develop innovative CBSS for skin injury treatment. Sea urchin food waste after gonad removal was here used to extract fibrillar glycosaminoglycan (GAG)-rich collagen to produce bilayer (2D + 3D) CBSS.
View Article and Find Full Text PDFThe information concerning the toxicity of sinking microplastics (MPs) on benthic marine animals, particularly benthic grazers, is still scant. No study focused on biological weathering of sinked MPs operated by benthic organisms. This study aims at investigating the ingestion and the effects induced by 7-days dietary exposure to environmentally relevant amount (8, 80 and 800 particles/g of food) of irregular shaped and sized (diameter 12.
View Article and Find Full Text PDFThe improper release of plastic items and wastes is nowadays one of the main environmental and social problems, whose solution or mitigation represents a great challenge worldwide. In this context, the growing use of the so-called biodegradable plastics could represent a possible solution in the short to medium term. The few information known about the ecological impact of these materials on freshwater organisms, especially the ones relative to the micro-debris derived from their aging, prompted us to study the comparison of the sub-lethal effects eventually caused by plastic and biodegradable plastic micro-debris on the mussel Dreissena polymorpha, which represents an excellent biological model for the freshwater ecosystems.
View Article and Find Full Text PDFResults Probl Cell Differ
July 2019
Reparative regeneration is defined as the replacement of lost adult body parts and is a phenomenon widespread yet highly variable among animals. This raises the question of which key cellular and molecular mechanisms have to be implemented in order to efficiently and correctly replace entire body parts in any animal. To address this question, different studies using an integrated cellular and functional genomic approach to study regeneration in stellate echinoderms (crinoids, asteroids and ophiuroids) had been carried out over the last few years.
View Article and Find Full Text PDFMicroplastics (MPs), plastic debris smaller than 5mm, are widely found in both marine and freshwater ecosystems. However, few studies regarding their hazardous effects on inland water organisms, have been conducted. For this reason, the aim of our research was the evaluation of uptake and chronic toxicity of two mixtures (MIXs) of virgin polystyrene microbeads (PMs) of 10μm and 1μm in size (MIX 1, with 5×10 of 1μmsizePMs/L and 5×10 of 10μmsizePMs/L, and MIX 2 with 2×10 of 1μmsizePMs/L and 2×10 of 10μmsizePMs/L) on freshwater zebra mussel Dreissena polymorpha (Mollusca: Bivalvia) during 6 exposure days.
View Article and Find Full Text PDFRegeneration is a post-embryonic developmental process that ensures complete morphological and functional restoration of lost body parts. The repair phase is a key step for the effectiveness of the subsequent regenerative process: in vertebrates, efficient re-epithelialisation, rapid inflammatory/immune response and post-injury tissue remodelling are fundamental aspects for the success of this phase, their impairment leading to an inhibition or total prevention of regeneration. Among deuterostomes, echinoderms display a unique combination of striking regenerative abilities and diversity of useful experimental models, although still largely unexplored.
View Article and Find Full Text PDFThe potential for repairing and replacing cells, tissues, organs and body parts is considered a primitive attribute of life shared by all the organisms, even though it may be expressed to a different extent and which is essential for the survival of both individual and whole species. The ability to regenerate is particularly evident and widespread within invertebrates. In spite of the wide availability of experimental models, regeneration has been comprehensively explored in only a few animal systems (i.
View Article and Find Full Text PDFThe use of marine collagens is a hot topic in the field of tissue engineering. Echinoderms possess unique connective tissues (Mutable Collagenous Tissues, MCTs) which can represent an innovative source of collagen to develop collagen barrier-membranes for Guided Tissue Regeneration (GTR). In the present work we used MCTs from different echinoderm models (sea urchin, starfish and sea cucumber) to produce echinoderm-derived collagen membranes (EDCMs).
View Article and Find Full Text PDFThe red starfish Echinaster sepositus is an excellent model for studying arm regeneration processes following traumatic amputation. The initial repair phase was described in a previous paper in terms of the early cicatrisation phenomena, and tissue and cell involvement. In this work, we attempt to provide a further comprehensive description of the later regenerative stages in this species.
View Article and Find Full Text PDFStarfish can regenerate entire arms following their loss by both autotomic and traumatic amputation. Although the overall regenerative process has been studied several times in different asteroid species, there is still a considerable gap of knowledge as far as the detailed aspects of the repair phase at tissue and cellular level are concerned, particularly in post-traumatic regeneration. The present work is focused on the arm regeneration model in the Mediterranean red starfish Echinaster sepositus; to describe the early cellular mechanisms of arm regeneration following traumatic amputation, different microscopy techniques were employed.
View Article and Find Full Text PDFThe viscoelastic properties of vertebrate connective tissues rarely undergo significant changes within physiological timescales, the only major exception being the reversible destiffening of the mammalian uterine cervix at the end of pregnancy. In contrast to this, the connective tissues of echinoderms (sea urchins, starfish, sea cucumbers, etc.) can switch reversibly between stiff and compliant conditions in timescales of around a second to minutes.
View Article and Find Full Text PDFCollagen has become a key-molecule in cell culture studies and in the tissue engineering field. Industrially, the principal sources of collagen are calf skin and bones which, however, could be associated to risks of serious disease transmission. In fact, collagen derived from alternative and riskless sources is required, and marine organisms are among the safest and recently exploited ones.
View Article and Find Full Text PDFAmong echinoderms, crinoids are well known for their remarkable regenerative potential. Regeneration depends mainly on progenitor cells (undifferentiated or differentiated), which migrate and proliferate in the lesion site. The crucial role of the "progenitor" elements involved in the regenerative processes, in terms of cell recruitment, sources, and fate, is a central problem in view of its topical interest and biological implications.
View Article and Find Full Text PDFAlthough sponges are still often considered to be simple, inactive animals, both larvae and adults of different species show clear coordination phenomena triggered by extrinsic and intrinsic stimuli. Chondrosia reniformis, a common Mediterranean demosponge, lacks both endogenous siliceous spicules and reinforcing spongin fibers and has a very conspicuous collagenous mesohyl. Although this species can stiffen its body in response to mechanical stimulation when handled, almost no quantitative data are available in the literature on this phenomenon.
View Article and Find Full Text PDFEchinoderms and sponges share a unique feature that helps them face predators and other environmental pressures. They both possess collagenous tissues with adaptable viscoelastic properties. In terms of morphology these structures are typical connective tissues containing collagen fibrils, fibroblast- and fibroclast-like cells, as well as unusual components such as, in echinoderms, neurosecretory-like cells that receive motor innervation.
View Article and Find Full Text PDFEchinoderms possess unique connective tissues, called mutable collagenous tissues (MCTs), which undergo nervously mediated, drastic and reversible or irreversible changes in their mechanical properties. Connective tissue mutability influences all aspects of echinoderm biology and is a key-factor in the ecological success of the phylum. Due to their sensitivity to endogenous or exogenous agents, MCTs may be targets for a number of common pollutants, with potentially drastic effects on vital functions.
View Article and Find Full Text PDFTwo echinoderm species, the sea urchin Paracentrotus lividus and the feather star Antedon mediterranea, were exposed for 28 days to several EDCs: three putative androgenic compounds, triphenyltin (TPT), fenarimol (FEN), methyltestosterone (MET), and two putative antiandrogenic compounds, p,p'-DDE (DDE) and cyproterone acetate (CPA). The exposure nominal concentrations were from 10 to 3000 ng L(-1), depending on the compound. This paper is an attempt to join three different aspects coming from our ecotoxicological tests: (1) the chemical behaviour inside the experimental system; (2) the measured toxicological endpoints; (3) the biochemical responses, to which the measured endpoints may depend.
View Article and Find Full Text PDF