Publications by authors named "Bonaldo B"

The effects of bisphenol A (BPA), a highly diffused endocrine-disrupting chemical found mainly in plastics, on neural circuits and behaviors are well-known. However, the effects of its substitutes have not been fully investigated. Thus, in the present study, we compare the effects of perinatal exposure to bisphenol A or S (BPS) on reproductive behaviors and related hypothalamic kisspeptin system in mice.

View Article and Find Full Text PDF

Genistein (GEN) is a phytoestrogen with oestrogen-like activity found in many plants. Classified as an endocrine disruptor, GEN is potentially hazardous, particularly during developmental stages. It induces alterations in anxious behaviour, fertility, and energy metabolism, alongside modifications in specific brain circuits.

View Article and Find Full Text PDF

Rationale: In 2018, the International Classification of Diseases (ICD-11) classified Gaming Disorder (GD) as a mental disorder. GD mainly occurs among adolescents, who, after developing addiction, show psychopathological traits, such as social anxiety, depression, social isolation, and attention deficit. However, the different studies conducted in humans so far show several limitations, such as the lack of demographic heterogeneity and equal representation of age, differences in the type of game and in the follow-up period.

View Article and Find Full Text PDF

Bisphenols, synthetic organic compounds used in the production of plastics, are an extremely abundant class of Endocrine Disrupting Chemicals, i.e., exogenous chemicals or mixtures of chemicals that can interfere with any aspect of hormone action.

View Article and Find Full Text PDF

Multiple Sclerosis (MS) is a chronic autoimmune inflammatory disease affecting the central nervous system (CNS). It is characterized by different prevalence in the sexes, affecting more women than men, and different outcomes, showing more aggressive forms in men than in women. Furthermore, MS is highly heterogeneous in terms of clinical aspects, radiological, and pathological features.

View Article and Find Full Text PDF

Epidemiological studies support the idea that multiple sclerosis (MS) is a multifactorial disease, overlapping genetic, epigenetic, and environmental factors. A better definition of environmental risks is critical to understand both etiology and the sex-related differences of MS. Exposure to endocrine-disrupting compounds (EDCs) fully represents one of these risks.

View Article and Find Full Text PDF

Organotins such as tributyltin chloride (TBT), are highly diffused environmental pollutants, which act as metabolism disrupting chemicals, i.e. may interfere with fat tissue differentiation, as well as with neuroendocrine circuits, thus impairing the control of energetic balance.

View Article and Find Full Text PDF

Introduction: Maternal behavior depends on a multitude of factors, including environmental ones, such as Endocrine Disrupting Chemicals (EDCs), which are increasingly attracting attention. Bisphenol A (BPA), an EDC present in plastic, is known to exert negative effects on maternal behavior. Bisphenol S (BPS), a BPA substitute, seems to share some endocrine disrupting properties.

View Article and Find Full Text PDF

Internet gaming disorder (IGD) has been included in the 2013 (DSM-5) as a condition in need of further study, and gaming disorder was recognized by the World Health Organization as a mental disorder in the (ICD-11) of 2018. IGD has different characteristics in the two sexes and is more prevalent in males than females. However, even if the female gamer population is constantly growing, the majority of available studies analyzed only males, or the data were not analyzed by sex.

View Article and Find Full Text PDF

Bisphenol A (BPA), an organic synthetic compound found in some plastics and epoxy resins, is classified as an endocrine disrupting chemical. Exposure to BPA is especially dangerous if it occurs during specific "critical periods" of life, when organisms are more sensitive to hormonal changes (i.e.

View Article and Find Full Text PDF

Multiple Sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) in which inflammation plays a key pathological role. Recent evidences showed that systemic inflammation induces increasing cell infiltration within meninges and perivascular spaces in the brain parenchyma, triggering resident microglial and astrocytic activation. The anti-inflammatory enzyme A20, also named TNF associated protein 3 (TNFAIP3), is considered a central gatekeeper in inflammation and peripheral immune system regulation through the inhibition of NF-kB.

View Article and Find Full Text PDF

G protein-coupled estrogen receptor (GPER) in the amygdala and the dorsal hippocampus mediates actions of estradiol on anxiety, social recognition and spatial memory. In addition, GPER participates in the estrogenic regulation of synaptic function in the amygdala and in the process of adult neurogenesis in the dentate gyrus. While the distribution of the canonical estrogen receptors α and β in the amygdala and dorsal hippocampus are well characterized, little is known about the regional distribution of GPER in these brain regions and whether this distribution is affected by sex or the stages of the estrous cycle.

View Article and Find Full Text PDF

Introduction: The membrane-associated G protein-coupled estrogen receptor 1 (GPER) mediates the regulation by estradiol of arginine-vasopressin immunoreactivity in the supraoptic and paraventricular hypothalamic nuclei of female rats and is involved in the estrogenic control of hypothalamic regulated functions, such as food intake, sexual receptivity, and lordosis behavior.

Objective: To assess GPER distribution in the rat hypothalamus.

Methods: GPER immunoreactivity was assessed in different anatomical subdivisions of five selected hypothalamic regions of young adult male and cycling female rats: the arcuate nucleus, the lateral hypothalamus, the paraventricular nucleus, the supraoptic nucleus, and the ventromedial hypothalamic nucleus.

View Article and Find Full Text PDF

The metabolism-disrupting chemicals (MDCs) are molecules (largely belonging to the category of endocrine disrupting chemicals, EDCs) that can cause important diseases as the metabolic syndrome, obesity, Type 2 Diabetes Mellitus or fatty liver. MDCs act on fat tissue and liver, may regulate gut functions (influencing absorption), but they may also alter the hypothalamic peptidergic circuits that control food intake and energy metabolism. These circuits are normally regulated by several factors, including estrogens, therefore those EDCs that are able to bind estrogen receptors may promote metabolic changes through their action on the same hypothalamic circuits.

View Article and Find Full Text PDF