Suppressing actions is essential for flexible behavior. Multiple neural circuits involved in behavioral inhibition converge upon a key basal ganglia output nucleus, the substantia nigra pars reticulata (SNr). To examine how changes in basal ganglia output contribute to self-restraint, we recorded SNr neurons during a proactive behavioral inhibition task.
View Article and Find Full Text PDFBackground: A central goal of systems neuroscience is to understand the relationships amongst constituent units in neural populations, and their modulation by external factors, using high-dimensional and stochastic neural recordings. Parametric statistical models (e.g.
View Article and Find Full Text PDFFlexible behavior requires restraint of actions that are no longer appropriate. This behavioral inhibition critically relies on frontal cortex - basal ganglia circuits. Within the basal ganglia, the globus pallidus pars externa (GPe) has been hypothesized to mediate selective proactive inhibition: being prepared to stop a specific action, if needed.
View Article and Find Full Text PDFTime and memory are inextricably linked, but it is far from clear how event durations and temporal sequences are encoded in memory. In this review, we focus on resource allocation models of working memory which suggest that memory resources can be flexibly distributed amongst several items such that the precision of working memory decreases with the number of items to be encoded. This type of model is consistent with human performance in working memory tasks based on visual, auditory as well as temporal stimulus patterns.
View Article and Find Full Text PDFOrdinal comparison of successively presented signal durations requires (a) the encoding of the first signal duration (standard), (b) maintenance of temporal information specific to the standard duration in memory, and (c) timing of the second signal duration (comparison) during which a comparison is made of the first and second durations. Rats were first trained to make ordinal comparisons of signal durations within three time ranges using 0.5, 1.
View Article and Find Full Text PDFNeurosci Biobehav Rev
January 2015
Interval timing and working memory are critical components of cognition that are supported by neural oscillations in prefrontal-striatal-hippocampal circuits. In this review, the properties of interval timing and working memory are explored in terms of behavioral, anatomical, pharmacological, and neurophysiological findings. We then describe the various neurobiological theories that have been developed to explain these cognitive processes - largely independent of each other.
View Article and Find Full Text PDFAdv Exp Med Biol
March 2015
Scalar Timing Theory (an information-processing version of Scalar Expectancy Theory) and its evolution into the neurobiologically plausible Striatal Beat-Frequency (SBF) theory of interval timing are reviewed. These pacemaker/accumulator or oscillation/coincidence detection models are then integrated with the Adaptive Control of Thought-Rational (ACT-R) cognitive architecture as dedicated timing modules that are able to make use of the memory and decision-making mechanisms contained in ACT-R. The different predictions made by the incorporation of these timing modules into ACT-R are discussed as well as the potential limitations.
View Article and Find Full Text PDFRecent studies have reported that cognitive inflexibility associated with impairments in a frontal-striatal circuit and parietal region is a core cognitive deficit of obsessive-compulsive disorder (OCD). However, few studies have examined progressive changes in these regions following clinical improvement in obsessive-compulsive symptoms. To determine if treatment changes the aberrant activation pattern associated with task switching in OCD, we examined the activation patterns in brain areas after treatment.
View Article and Find Full Text PDFEmpathy deficits might play a role in social dysfunction in schizophrenia. However, few studies have investigated the neuroanatomical underpinnings of the subcomponents of empathy in schizophrenia. This study investigated the hemodynamic responses to three subcomponents of empathy in patients with schizophrenia (N=15) and healthy volunteers (N=18), performing an empathy cartoon task during functional magnetic resonance imaging.
View Article and Find Full Text PDFAlthough structural and functional neuroimaging studies of schizophrenia have suggested that impaired connectivity in the extensive network of cortical and subcortical areas is involved in its pathophysiology, there were no studies have investigated the structural integrity of the lower sensory brain areas including the inferior (IC) and the superior (SC) colliculus. The IC plays an important role in mediating auditory gating processes and inhibitory neural transmission, while the SC is a key structure in a distributed network mediating saccadic eye movements and shifts of attention, both of which have been linked to the pathophysiology of schizophrenia. We compared the morphologies of the IC and SC, which are involved in the early stage processing of visual and auditory stimuli, in patients with schizophrenia (N=28) and healthy controls (N=34) using high-resolution magnetic resonance imaging.
View Article and Find Full Text PDFThe interaction of information derived from the voice and facial expression of a speaker contributes to the interpretation of the emotional state of the speaker and to the formation of inferences about information that may have been merely implied in the verbal communication. Therefore, we investigated the brain processes responsible for the integration of emotional information originating from different sources. Although several studies have reported possible sites for integration, further investigation using a neutral emotional condition is required to locate emotion-specific networks.
View Article and Find Full Text PDFObjective: Although research has shown that deficits in various cognitive functions may underlie obsessive-compulsive disorder (OCD), studies have not yet clarified the specificity and etiology of perception processing, particularly the perception of biological motion that is correlated with social cognition. We used functional magnetic resonance imaging (fMRI) to investigate neural activity associated with the perception of biological motion in OCD patients.
Methods: The subjects were 15 patients with OCD and 15 age- and IQ-matched healthy volunteers.
We are constantly exposed to symbols such as traffic signs, emoticons in internet communication, or other abstract representations of objects as well as, of course, the written words. However, aside from the word reading, little is known about the way our brain responds when we read non-lexical iconic symbols. By using functional MRI, we found that the watching of icons recruited manifold brain areas including frontal and parietal cortices in addition to the temporo-occipital junction in the ventral pathway.
View Article and Find Full Text PDFSpatial smoothing is an important post-processing procedure that is used to increase the signal-to-noise ratio (SNR) of blood oxygenation level-dependent signals (BOLD) in common functional magnetic resonance imaging (fMRI) applications. However, recent studies have shown that smoothing artificially shifts probabilistic local maxima of fMRI activations. In this study, we show shifting of the localization of functional centers in hand motor areas of the cerebral cortex by three-dimensional isotropic Gaussian kernel smoothing or two-dimensional heat kernel smoothing in volume- and surface-based fMRI analyses.
View Article and Find Full Text PDFA deficit in cognitive flexibility is acknowledged as a cognitive trait for obsessive-compulsive disorder (OCD). However, no investigations to date have used a cognitive activation paradigm to specify the neural correlates of this deficit in OCD. The objective of this study was to clarify how abnormal brain activities relate to cognitive inflexibility in OCD, using a task-switching paradigm.
View Article and Find Full Text PDF