Publications by authors named "Bomou Ma"

The combination of crystallization, transparency, and strength is still a challenge for broadening the application of polylactic acid (PLA) films, while it is also difficult to balance. In this work, the long aliphatic chains of octadecylamine (ODA) were grafted onto the surface of cellulose nanocrystal (CNC) by tannic acid oxidation self-polymerization and Michael addition/Schiff base reaction between polytannic acid and ODA. Furthermore, the ODA grafted CNC (g-CNC) was used as green reinforcement for the PLA matrix and a series of PLA/g-CNC nanocomposite films were prepared by the casting method.

View Article and Find Full Text PDF

A traditional injectable photocrosslinked hydrogel had disadvantages of the residual photoinitiator and toxic crosslinker, slow curing, and a complex preparation process. At the same time, hydrogels cannot act as artificial skin to restore skin sensory function during the wound healing cycle. In this work, an injectable photocrosslinked hydrogel was prepared which can be quickly cured without photoinitiator.

View Article and Find Full Text PDF

The raw material of polylactide (PLA) is lactic acid obtained by biological fermentation. PLA is the most promising degradable polymer to replace traditional plastics to address the pollution problems caused by their non-degradability. However, the application of PLA is hindered by its low softening temperature, easy hydrolysis, and poor toughness.

View Article and Find Full Text PDF

In recent years, natural polymer-based electrospun fibers (EFs) with huge specific surface area, good biocompatibility, and biological activity obtained from electrospinning process exhibit tremendous vitality in the field of biomedical areas. Herein, the parameters of electrospinning from two perspectives, polymer solution such as solvent, polymeric relative molecular mass, concentration, viscosity, and conductivity of the solution, and electrospinning process such as spinning voltage, spinning flow rate, needle tip to collector distance, temperature, and humidity are first detailed. Next, the raw materials consisting of polysaccharides such as cellulose, hyaluronic acid, alginate, and chitosan as well as proteins such as collagen, gelatin, silk fibroin, and keratin are summarized.

View Article and Find Full Text PDF

Strippable film is effective for removing radioactive contamination. However, it still has some limitations, such as the long curing time (about 30 min~24 h) and the requirement of organic solvents. To address these issues, we report a simple protocol to prepare strippable decontamination films using liquid polybutadiene (LPB) and tert-butyl acrylate (TBA) as the raw materials without solvent and using camphorquinone/ethyl 4-dimethylaminobenzoate (CQ/EDB) as a photoinitiator, where the film was formed under household LED panel light or daylight irradiation for about 540 s.

View Article and Find Full Text PDF

This paper investigated the feasibility of enhancing the interface between lignocellulosic fibers and a polypropylene matrix via structure alteration of lignin at elevated temperatures. Alkali treatment can remove gum substances from lignocellulose fibers effectively at elevated temperatures but easily causes damages to fiber strength. In previous studies on directional delignification of lignocellulosic fibers, loss of fiber strength is avoided but condensation and degradation of lignin are accelerated.

View Article and Find Full Text PDF

In this research, nanocellulose crystal (NCC) grafted with lactic acid (LA) oligomer was synthesized by one-pot method and used to reinforce the poly(l-lactic acid) (PLLA) matrix. FT-IR, XRD, and C NMR were used to analyze the structure of modified nanocellulose crystal (g-NCC). The results of GPC suggested that the degree of polymerization of the grafted segments was 23, and the degree of hydroxyl substitution of g-NCC was 2.

View Article and Find Full Text PDF

Natural extracts gallnut tannins (GTs) were used as functional components to prepare chitosan/gallnut tannins (CS/GTs) composite fiber by blended solution spinning. Chitosan fiber has great potential to be used as absorbent suture and dressing due to its good biocompatibility. However, the weak mechanical properties limited its application.

View Article and Find Full Text PDF

In this study, polyacrylic acid modified filter paper (FP/PAA) was synthesized by in-situ polymerization of acrylic acid, which was used as a matrix to chelate nano-scale zero valent iron (nZVI). The loading content of nZVI in the filter paper reached 24.8%.

View Article and Find Full Text PDF

Chicken feather, a potential source of keratin, is often disposed as waste material. Although some methods, i.e.

View Article and Find Full Text PDF

In this research, keratin was extracted from the disposable chicken feather using l-cysteine as reducing agent. Then, it was re-dissolved in the sodium carbonate-sodium bicarbonate buffer, and the pure keratin membrane and fiber were fabricated by doctor-blade casting process and wet spinning method, respectively. Scanning electron microscopy (SEM), fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were used to characterize the chemical and physical properties of resulting powder, membrane and fiber.

View Article and Find Full Text PDF

Novel amphiphilic conetworks (APCNs) with uniform channel size were synthesized through end-cross-linking of well-defined amphiphilic triblock copolymers via atom transfer radical polymerization (ATRP). A new ditelechelic polydimethylsiloxane macroinitiator was synthesized to initiate the polymerization of N,N-dimethylacrylamide. The resulting triblock copolymers show well-defined molecular weight with narrow polydisperisty, which are telechelic modified by allylamine and fully cross-linked with polyhydrosiloxanes through hydrosilylation.

View Article and Find Full Text PDF

In this paper, rod-like chitin whisker was used as a filler to reinforce the chitosan membrane, and a series of composite membranes were prepared by casting-evaporation method. Mechanical testing shows that tensile strength of the resulting composite membrane with 3 wt% chitin whisker content reaches up to 110.3 MPa, which is about 2.

View Article and Find Full Text PDF

A binary ionic liquid system was confirmed to be a promising solvent to dissolve chitosan, and the regenerated chitosan fibers were prepared by wet and dry-wet spinning technique respectively. The SEM results show that the chitosan fibers prepared by wet spinning technique present striated surface and round cross section, and the chitosan fibers prepared by dry-wet spinning technique present smooth surface and irregular cross section. The mechanical testing results show that the regenerated chitosan fibers present relatively high tenacity, especially, these prepared by dry-wet spinning process present excellent strength and initial modulus, i.

View Article and Find Full Text PDF

In this study, glycine hydrochloride (Gly·HCl) is confirmed to be a promising solvent for dissolving native chitosan and preparing regenerated chitosan membrane. As compared with the chitosan membrane prepared from traditional acetic acid, the membrane prepared from Gly·HCl by dry technique shows excellent tensile strength and initial modulus, i.e.

View Article and Find Full Text PDF