Publications by authors named "Bommerich U"

Substrates containing F can serve as background-free reporter molecules for NMR and MRI. However, in vivo applications are still limited due to the lower signal-to-noise ratio (SNR) when compared with H NMR. Although hyperpolarization can increase the SNR, to date, only photo-chemically induced dynamic nuclear polarization (photo-CIDNP) allows for hyperpolarization without harmful metal catalysts.

View Article and Find Full Text PDF

Ultra-low-field (ULF) nuclear magnetic resonance (NMR) is a promising spectroscopy method allowing for, e.g., the simultaneous detection of multiple nuclei.

View Article and Find Full Text PDF

Analytical expressions for the signal enhancement in solid-state PHIP NMR spectroscopy mediated by homonuclear dipolar interactions and single pulse or spin-echo excitation are developed and simulated numerically. It is shown that an efficient enhancement of the proton NMR signal in solid-state NMR studies of chemisorbed hydrogen on surfaces is possible. Employing typical reaction efficacy, enhancement-factors of ca.

View Article and Find Full Text PDF

Parahydrogen-induced polarization (PHIP) is a promising new tool for medical applications of MR, including MRI. The PHIP technique can be used to transfer high non-Boltzmann polarization, derived from parahydrogen, to isotopes with a low natural abundance or low gyromagnetic ratio (e.g.

View Article and Find Full Text PDF

Silica nanoparticles (SiNPs) were chosen as a solid support material for the immobilization of a new Wilkinson's-type catalyst. In a first step, polymer molecules (poly(triphenylphosphine)ethylene (PTPPE); 4-diphenylphosphine styrene as monomer) were grafted onto the silica nanoparticles by surface-initiated photoinferter-mediated polymerization (SI-PIMP). The catalyst was then created by binding rhodium (Rh) to the polymer side chains, with RhCl3⋅x H2O as a precursor.

View Article and Find Full Text PDF

Fluorinated substances are important in chemistry, industry, and the life sciences. In a new approach, parahydrogen-induced polarization (PHIP) is applied to enhance (19)F MR signals of (perfluoro-n-hexyl)ethene and (perfluoro-n-hexyl)ethane. Unexpectedly, the end-standing CF3 group exhibits the highest amount of polarization despite the negligible coupling to the added protons.

View Article and Find Full Text PDF

Hyperpolarization (HP) techniques are increasingly important in magnetic resonance imaging (MRI) and spectroscopy (MRS). HP methods have the potential to overcome the fundamentally low sensitivity of magnetic resonance (MR). A breakthrough of HP-MR in life sciences and medical applications is still limited by the small number of accessible, physiologically relevant substrates.

View Article and Find Full Text PDF

Para hydrogen induced polarization (PHIP) is a powerful hyperpolarization technique, which increases the NMR sensitivity by several orders of magnitude. However the hyperpolarized signal is created as an anti-phase signal, which necessitates high magnetic field homogeneity and spectral resolution in the conventional PHIP schemes. This hampers the application of PHIP enhancement in many fields, as for example in food science, materials science or MRI, where low B(0)-fields or low B(0)-homogeneity do decrease spectral resolution, leading to potential extinction if in-phase and anti-phase hyperpolarization signals cannot be resolved.

View Article and Find Full Text PDF

It is shown that the para-hydrogen induced polarization (PHIP) phenomenon in homogenous solution containing the substrate styrene is also observable employing simple inorganic systems of the form MCl(3)·xH(2)O (M=Rh, Ir) as catalyst. Such observation confirms that already very simple metal complexes enable the creation of PHIP signal enhancement in solution. This opens up new pathways to increase the sensitivity of NMR and MRT by PHIP enhancement using cost-effective catalysts and will be essential for further mechanistic studies of simple transition metal systems.

View Article and Find Full Text PDF

Para-hydrogen induced polarization (PHIP) NMR in solution, combined with solid-state NMR, can be efficiently employed for the highly sensitive in-situ detection of the leaching properties of immobilized catalysts. The knowledge of this property is important for possible applications of PHIP experiments in medicine, biology or industry, where leached catalysts poison the solution of hyperpolarized products. As experimental example Wilkinson's catalyst RhCl(PPh(3))(3) (1) immobilized on mesoporous silica is chosen.

View Article and Find Full Text PDF

The use of parahydrogen-induced polarization (PHIP) for signal enhancement in nuclear magnetic resonance spectroscopy (NMR) is well established. Recently, this method has been adopted to increase the sensitivity of magnetic resonance imaging (MRI). The transfer of non-thermal spin hyperpolarization--from parahydrogen to a heteronucleus--provides better contrast, thus enabling new imaging agents.

View Article and Find Full Text PDF

Recently, Levitt and co-workers demonstrated that conserving the population of long-lasting nuclear singlet states in weak magnetic fields can lead to a preservation of nuclear spin information over times substantially longer than governed by the (high-field) spin-lattice relaxation time T1. Potential benefits of the prolonged spin information for magnetic resonance imaging and spectroscopy were pointed out, particularly when combined with the parahydrogen induced polarization (PHIP) methodology. In this contribution, we demonstrate that an increase of the effective relaxation time by a factor up to three is achieved experimentally, when molecules hyperpolarized by PHIP are kept in a weak magnetic field instead of the strong field of a typical NMR magnet.

View Article and Find Full Text PDF
Article Synopsis
  • Homogeneous hydrogenation with parahydrogen enhances NMR signals of hydrogen nuclei when symmetry is broken in the products, a process known as Parahydrogen-induced polarization (PHIP).
  • PHIP also transfers hyperpolarization to other nuclei, including 2H, 13C, 29Si, and 31P, under low magnetic fields and is shown to affect 19F in both Earth's magnetic field and strong magnetic fields like those in NMR spectrometers.
  • A systematic study reveals that the mechanisms for PHIP transfer vary based on interactions and that high hydrogenation rates combined with longer relaxation times produce greater hyperpolarization, leading to potential medical uses in MRI with hyperpolarized 19F compounds as effective contrast
View Article and Find Full Text PDF

The discovery of the designer steroid tetrahydrogestrinone (THG) in elite athletes' doping control samples in 2003 demonstrated the availability of steroid derivatives prepared solely for doping purposes. Modern mass spectrometers utilizing electrospray ionization and collisionally activated dissociation (CAD) of analytes allow the structural characterization of steroids and their derivatization sites by the elucidation of fragmentation behaviors. A total of 21 steroids comprising either a 4,9,11-triene, a 3-keto-4-ene or a 3-keto-1-ene nucleus were investigated regarding their dissociation pathways, deuterated analogues were synthesized and fragmentation routes were postulated, permitting the identification of steroidal structures and modifications.

View Article and Find Full Text PDF