Battery-type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage limitations and achieving high energy density. Herein, a novel 2D-on-2D Al-doped NiCo layered double hydroxide (NiCoAl LDH) nanosheet arrays with high-mass-loading are grown on a carbon cloth (CC) substrate via a two-step hydro/solvothermal deposition strategy, and the effect of Al doping is employed to modify the deposition behavior, hierarchical morphology, phase stability, and multi-metallic synergistic effect. The optimized NiCoAl LDH electrode exhibits capacities of 5.
View Article and Find Full Text PDFDesigning advanced electrocatalysts for oxygen evolution at large current density (>500 mA cm ) is critical to practical water splitting applications. Herein, a novel quasi-parallel NiFe layered double hydroxide (NiFe LDH) nanosheet arrays with pattern alignment on Ni foam was developed. The initial α-Ni(OH) layer induced effective coprecipitation between Ni and Fe for the formation of LDH phase, guaranteeing the electronic pulling effect among metal cations and enhancing the interaction between active materials and substrate for excellent adhesion and electrical conductivity.
View Article and Find Full Text PDF