Publications by authors named "Bolotta A"

Friedreich ataxia (FRDA) is a recessive neurodegenerative disease characterized by progressive ataxia, dyscoordination, and loss of vision. The variable length of the pathogenic GAA triplet repeat expansion in the gene in part explains the interindividual variability in the severity of disease. The GAA repeat expansion leads to epigenetic silencing of therefore, variability in properties of epigenetic effector proteins could also regulate the severity of FRDA.

View Article and Find Full Text PDF

In a previous study, the whole transcriptome of the vastus lateralis muscle from sedentary elderly and from age-matched athletes with an exceptional record of high-intensity, life-long exercise training was compared-the two groups representing the two extremes on a physical activity scale. Exercise training enabled the skeletal muscle to counteract age-related sarcopenia by inducing a wide range of adaptations, sustained by the expression of protein-coding genes involved in energy handling, proteostasis, cytoskeletal organization, inflammation control, and cellular senescence. Building on the previous study, we examined here the network of non-coding RNAs participating in the orchestration of gene expression and identified differentially expressed micro- and long-non-coding RNAs and some of their possible targets and roles.

View Article and Find Full Text PDF

The wide spectrum of unique needs and strengths of Autism Spectrum Disorders (ASD) is a challenge for the worldwide healthcare system. With the plethora of information from research, a common thread is required to conceptualize an exhaustive pathogenetic paradigm. The epidemiological and clinical findings in ASD cannot be explained by the traditional linear genetic model, hence the need to move towards a more fluid conception, integrating genetics, environment, and epigenetics as a whole.

View Article and Find Full Text PDF

Physical exercise is deemed the most efficient way of counteracting the age-related decline of skeletal muscle. Here we report a transcriptional study by next-generation sequencing of vastus lateralis biopsies from elderly with a life-long high-level training practice ( = 9) and from age-matched sedentary subjects ( = 5). Unsupervised mixture distribution analysis was able to correctly categorize trained and untrained subjects, whereas it failed to discriminate between individuals who underwent a prevalent endurance ( = 5) or a prevalent resistance ( = 4) training, thus showing that the training mode was not relevant for sarcopenia prevention.

View Article and Find Full Text PDF

Aryl hydrocarbon receptor (AhR), a highly conserved intracellular transcription factor, is activated by a plethora of ligands of both exogenous and endogenous nature. Besides activating xenobiotic-metabolizing enzymes, it is involved in the differentiation and development of hematopoietic, hepatic, nervous and immune systems. More and more data describe its role in the regulation of immune responses and in the onset and progression of inflammation.

View Article and Find Full Text PDF

Unlabelled: Friedreich’s ataxia is an autosomal recessive disorder characterized by impaired mitochondrial function, resulting in oxidative stress. In this study, we aimed at evaluating whether tocotrienol, a phytonutrient that diffuses easily in tissues with saturated fatty layers, could complement the current treatment with idebenone, a quinone analogue with antioxidant properties. Five young Friedreich’s ataxia patients received a low-dose tocotrienol supplementation (5 mg/kg/day), while not discontinuing idebenone treatment.

View Article and Find Full Text PDF

Background: It has been established that children with Autism Spectrum Disorders (ASD) are affected by oxidative stress, the origin of which is still under investigation. In the present work, we evaluated inflammatory and pro-oxidant soluble signature in non-syndromic ASD and age-matched typically developing (TD) control children.

Methods: We analyzed leukocyte gene expression of inflammatory cytokines and inflammation/oxidative-stress related molecules in 21 ASD and 20 TD children.

View Article and Find Full Text PDF

Iron homeostasis in the cardiac tissue as well as the involvement of the hepcidin-ferroportin (HAMP-FPN) axis in this process and in cardiac functionality are not fully understood. Imbalance of iron homeostasis occurs in several cardiac diseases, including iron-overload cardiomyopathies such as Friedreich's ataxia (FRDA, OMIM no. 229300), a hereditary neurodegenerative disorder.

View Article and Find Full Text PDF

Red blood cells (RBCs) from people affected by autism spectrum disorders (ASDs) are a target of oxidative stress. By scanning electron microscopy, we analyzed RBC morphology from 22 ASD children and show here that only 47.5 ± 3.

View Article and Find Full Text PDF

Na , K -ATPase (NKA) activity, which establishes the sodium and potassium gradient across the cell membrane and is instrumental in the propagation of the nerve impulses, is altered in a number of neurological and neuropsychiatric disorders, including autism spectrum disorders (ASD). In the present work, we examined a wide range of biochemical and cellular parameters in the attempt to understand the reason(s) for the severe decrease in NKA activity in erythrocytes of ASD children that we reported previously. NKA activity in leukocytes was found to be decreased independently from alteration in plasma membrane fluidity.

View Article and Find Full Text PDF

Background: Clinical chemistry tests for autism spectrum disorder (ASD) are currently unavailable. The aim of this study was to explore the diagnostic utility of proteotoxic biomarkers in plasma and urine, plasma protein glycation, oxidation, and nitration adducts, and related glycated, oxidized, and nitrated amino acids (free adducts), for the clinical diagnosis of ASD.

Methods: Thirty-eight children with ASD (29 male, 9 female; age 7.

View Article and Find Full Text PDF

Membranes attract attention in medicine, concerning lipidome composition and fatty acid correlation with neurological diseases. Hyperspectral dark field microscopy (HDFM), a biophotonic imaging using reflectance spectra, provides accurate characterization of healthy adult RBC identifying a library of 8 spectral end-members. Here we report hyperspectral RBC imaging in children affected by Autism Spectrum Disorder (ASD) (n = 21) compared to healthy age-matched subjects (n = 20), investigating if statistically significant differences in their HDFM spectra exist, that can comprehensively map a membrane impairment involved in disease.

View Article and Find Full Text PDF

Aims/hypothesis: To assess thiamine and related metabolite status by analysis of plasma and urine in autistic children and healthy controls, correlations to clinical characteristics and link to plasma protein markers of oxidative damage.

Methods: 27 children with autism (21 males and 6 females) and 21 (15 males and 6 females) age-matched healthy control children were recruited. The concentration of thiamine and related phosphorylated metabolites in plasma and urine and plasma protein content of dityrosine, N-formylkynurenine and 3-nitrotyrosine was determined.

View Article and Find Full Text PDF

Autism Spectrum Disorders (ASD) are a heterogeneous group of neurodevelopmental disorders. Recognized causes of ASD include genetic factors, metabolic diseases, toxic and environmental factors, and a combination of these. Available tests fail to recognize genetic abnormalities in about 70% of ASD children, where diagnosis is solely based on behavioral signs and symptoms, which are difficult to evaluate in very young children.

View Article and Find Full Text PDF

Myotendinous junction is the muscle-tendon interface through which the contractile force can be transferred from myofibrils to the tendon extracellular matrix. At the ultrastructural level, aerobic training can modify the distal myotendinous junction of rat gastrocnemius, increasing the contact area between tissues. The aim of this work is to investigate the correlation between morphological changes and protein modulation of the myotendinous junction following moderate training.

View Article and Find Full Text PDF

In this study, the juxtamembrane region of the Drosophila SNARE protein neuronal-Synaptobrevin (n-Syb) was tested for its role in synaptic transmission. A transgenic approach was used to express n-Syb mutant genes. The transgenes carried engineered point mutations that alter the amino acid sequence of the conserved tryptophan residues in the juxtamembrane sequence.

View Article and Find Full Text PDF

Friedreich's ataxia (FRDA) is caused by deficient expression of the mitochondrial protein frataxin involved in the formation of iron-sulphur complexes and by consequent oxidative stress. We analysed low-dose tocotrienol supplementation effects on the expression of the three splice variant isoforms (FXN-1, FXN-2, and FXN-3) in mononuclear blood cells of FRDA patients and healthy subjects. In FRDA patients, tocotrienol leads to a specific and significant increase of FXN-3 expression while not affecting FXN-1 and FXN-2 expression.

View Article and Find Full Text PDF

Background: Exposure to intermittent hypoxia (IH) may enhance cardiac function and protects heart against ischemia-reperfusion (I/R) injury. To elucidate the underlying mechanisms, we developed a cardioprotective IH model that was characterized at hemodynamic, biochemical and molecular levels.

Methods: Mice were exposed to 4 daily IH cycles (each composed of 2-min at 6-8% O2 followed by 3-min reoxygenation for 5 times) for 14 days, with normoxic mice as controls.

View Article and Find Full Text PDF

It has been suggested that oxidative stress may play a role in the pathogenesis of Autism Spectrum Disorders (ASD), but the literature reports somewhat contradictory results. To further investigate the issue, we evaluated a high number of peripheral oxidative stress parameters, and some related issues such as erythrocyte membrane functional features and lipid composition. Twenty-one autistic children (Au) aged 5 to 12 years, were gender and age-matched with 20 typically developing children (TD).

View Article and Find Full Text PDF

The growing body of clinical and experimental data regarding electromagnetic field (EMF) bioeffects and their therapeutic applications has contributed to a better understanding of the underlying mechanisms of action. This study reports that two EMF modalities currently in clinical use, a pulse-modulated radiofrequency (PRF) signal, and a static magnetic field (SMF), applied independently, increased the rate of deoxygenation of human hemoglobin (Hb) in a cell-free assay. Deoxygenation of Hb was initiated using the reducing agent dithiothreitol (DTT) in an assay that allowed the time for deoxygenation to be controlled (from several min to several hours) by adjusting the relative concentrations of DTT and Hb.

View Article and Find Full Text PDF

Background/aims: The simultaneous supplementation of creatine and D-ribose has been shown to reduce apoptosis in vitro in non-irreversibly injured cultured ischemic cardiomyocytes through down-regulation of the signaling mechanisms governing adenosine monophosphate-activated protein kinase (AMPK) and protein kinase B (Akt). Here, we test the hypothesis that an analogous mechanism exists in vivo when the challenge is chronic exposure to hypoxia.

Methods: Five week-old mice were exposed to an atmosphere containing 10% O2 for 10 days.

View Article and Find Full Text PDF

The effect of exercise training on the fatty acid composition of erythrocyte membranes was evaluated in an experimental animal model where rats were subjected to a ten-wk aerobic training. Five groups of rats were compared: sedentary rats at 19 or 23 wks of age, rats trained at moderate or high intensity sacrificed at 19 wks of age, and rats trained at high intensity, and sacrificed following 4 weeks of sedentary life. We had already demonstrated that cardioprotection correlates with training intensity and partially persists in detrained rats.

View Article and Find Full Text PDF