Publications by authors named "Bolookat E"

Xerostomia is a common side effect of radiation therapy (RT) in patients with head and neck cancer. However, limited information is available on the temporal dynamics of parenchymal and vascular changes in salivary glands following RT. To address this gap in knowledge, we conducted experimental studies in mice employing ultrasound (US) with coregistered photoacoustic imaging (PAI) to noninvasively assess the early and late changes in salivary gland size, structure, vascularity, and oxygenation dynamics following RT.

View Article and Find Full Text PDF

Photoacoustic imaging (PAI) is a novel hybrid imaging modality that provides excellent optical contrast with the spatial resolution of ultrasound in vivo. The method is widely being investigated in the clinical setting for diagnostic applications in dermatology. In this report, we illustrate the utility of PAI as a non-invasive tool for imaging tattoos.

View Article and Find Full Text PDF

Determination of intrafraction motion in stereotactic body radiation therapy (SBRT) of non-small-cell lung cancer (NSCLC) usually involves generating an internal target volume (ITV) based on target segmentation in every one of the 10 phases of a 4-dimensional computed tomography (4DCT) dataset which increases dosimetry work load substantially. This study explores the feasibility of using a smaller number of phases to compile an ITV to get equivalent results. Twenty-five lung cancer patients treated with SBRT were retrospectively assessed.

View Article and Find Full Text PDF

The purpose of this study was to apply photoacoustic imaging (PAI), a relatively new imaging method, to non-invasively map neurovascular dynamics in salivary glands. Dynamic PAI with co-registered ultrasound (US) was performed in mice to monitor salivary gland hemodynamics in response to exogenous muscarinic receptor stimulation (pilocarpine) and blockade (atropine). Pilocarpine increased salivary gland oxygen saturation (%sO) within minutes after administration, which was abrogated by atropine.

View Article and Find Full Text PDF

Objective: Critical macromolecules such as DNA maybe damaged by free radicals that are generated from the interaction of ionizing radiation with biological systems. Melatonin and vitamin C have been shown to be direct free radical scavengers. The aim of this study was to investigate the in vivo/in vitro radioprotective effects of melatonin and vitamin C separately and combined against genotoxicity induced by 6 MV x-ray irradiation in human cultured blood lymphocytes.

View Article and Find Full Text PDF