Fred Brauer was an eminent mathematician who studied dynamical systems, especially differential equations. He made many contributions to mathematical epidemiology, a field that is strongly connected to data, but he always chose to avoid data analysis. Nevertheless, he recognized that fitting models to data is usually necessary when attempting to apply infectious disease transmission models to real public health problems.
View Article and Find Full Text PDFEntropy (Basel)
June 2024
Information-theoretic (IT) and multi-model averaging (MMA) statistical approaches are widely used but suboptimal tools for pursuing a multifactorial approach (also known as the method of multiple working hypotheses) in ecology. (1) Conceptually, IT encourages ecologists to perform tests on sets of artificially simplified models. (2) MMA improves on IT model selection by implementing a simple form of shrinkage estimation (a way to make accurate predictions from a model with many parameters relative to the amount of data, by "shrinking" parameter estimates toward zero).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2024
We present an approach to computing the probability of epidemic "burnout," i.e., the probability that a newly emergent pathogen will go extinct after a major epidemic.
View Article and Find Full Text PDFProductivity is strongly associated with terrestrial species richness patterns, although the mechanisms underpinning such patterns have long been debated. Despite considerable consumption of primary productivity by fire, its influence on global diversity has received relatively little study. Here we examine the sensitivity of terrestrial vertebrate biodiversity (amphibians, birds and mammals) to fire, while accounting for other drivers.
View Article and Find Full Text PDFThe Cox proportional hazards model is commonly used in evaluating risk factors in cancer survival data. The model assumes an additive, linear relationship between the risk factors and the log hazard. However, this assumption may be too simplistic.
View Article and Find Full Text PDFPredicting the combined effects of predators on shared prey has long been a focus of community ecology, yet quantitative predictions often fail. Failure to account for nonlinearity is one reason for this. Moreover, prey depletion in multiple predator effects (MPE) studies generates biased predictions in applications of common experimental and quantitative frameworks.
View Article and Find Full Text PDFInferring the relative strength (i.e. the ratio of reproduction numbers) and relative speed (i.
View Article and Find Full Text PDFTesting individuals for pathogens can affect the spread of epidemics. Understanding how individual-level processes of sampling and reporting test results can affect community- or population-level spread is a dynamical modeling question. The effect of testing processes on epidemic dynamics depends on factors underlying implementation, particularly testing intensity and on whom testing is focused.
View Article and Find Full Text PDFPopular songs are often said to be 'contagious', 'infectious' or 'viral'. We find that download count time series for many popular songs resemble infectious disease epidemic curves. This paper suggests infectious disease transmission models could help clarify mechanisms that contribute to the 'spread' of song preferences and how these mechanisms underlie song popularity.
View Article and Find Full Text PDFBackground: Patient age is one of the most salient clinical indicators of risk from COVID-19. Age-specific distributions of known SARS-CoV-2 infections and COVID-19-related deaths are available for many regions. Less attention has been given to the age distributions of serious medical interventions administered to COVID-19 patients, which could reveal sources of potential pressure on the healthcare system should SARS-CoV-2 prevalence increase, and could inform mass vaccination strategies.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2021
The reproduction number R and the growth rate r are critical epidemiological quantities. They are linked by generation intervals, the time between infection and onward transmission. Because generation intervals are difficult to observe, epidemiologists often substitute serial intervals, the time between symptom onset in successive links in a transmission chain.
View Article and Find Full Text PDFParents providing care must sometimes choose between rearing locations that are most favourable for offspring versus those that are most favourable for themselves. Here, we measured how both parental and offspring performance varied in nest sites distributed along an environmental gradient. The plainfin midshipman fish Porichthys notatus nests along a tidal gradient.
View Article and Find Full Text PDFHistorical records reveal the temporal patterns of a sequence of plague epidemics in London, United Kingdom, from the 14th to 17th centuries. Analysis of these records shows that later epidemics spread significantly faster ("accelerated"). Between the Black Death of 1348 and the later epidemics that culminated with the Great Plague of 1665, we estimate that the epidemic growth rate increased fourfold.
View Article and Find Full Text PDFA novel coronavirus (SARS-CoV-2) emerged as a global threat in December 2019. As the epidemic progresses, disease modellers continue to focus on estimating the basic reproductive number [Formula: see text]-the average number of secondary cases caused by a primary case in an otherwise susceptible population. The modelling approaches and resulting estimates of [Formula: see text] during the beginning of the outbreak vary widely, despite relying on similar data sources.
View Article and Find Full Text PDFMany disease models focus on characterizing the underlying transmission mechanism but make simple, possibly naive assumptions about how infections are reported. In this note, we use a simple deterministic Susceptible-Infected-Removed (SIR) model to compare two common assumptions about disease incidence reports: Individuals can report their infection as soon as they become infected or as soon as they recover. We show that incorrect assumptions about the underlying observation processes can bias estimates of the basic reproduction number and lead to overly narrow confidence intervals.
View Article and Find Full Text PDFBackground: Mathematical and statistical models are used to project the future time course of infectious disease epidemics and the expected future burden on health care systems and economies. Influenza is a particularly important disease in this context because it causes annual epidemics and occasional pandemics. In order to forecast health care utilization during epidemics-and the effects of hospitalizations and deaths on the contact network and, in turn, on transmission dynamics-modellers must make assumptions about the lengths of time between infection, visiting a physician, being admitted to hospital, leaving hospital, and death.
View Article and Find Full Text PDFBackground: West Nile virus (WNV) is a mosquito-transmitted disease of birds that has caused bird population declines and can spill over into human populations. Previous research has identified bird species that infect a large fraction of the total pool of infected mosquitoes and correlate with human infection risk; however, these analyses cover small spatial regions and cannot be used to predict transmission in bird communities in which these species are rare or absent. Here we present a mechanistic model for WNV transmission that predicts WNV spread (R) in any bird community in North America by scaling up from the physiological responses of individual birds to transmission at the level of the community.
View Article and Find Full Text PDFReproduction by individuals is typically recorded as count data (e.g., number of fledglings from a nest or inflorescences on a plant) and commonly modeled using Poisson or negative binomial distributions, which assume that variance is greater than or equal to the mean.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
October 2018
Large trees in the tropics are reportedly more vulnerable to droughts than their smaller neighbours. This pattern is of interest due to what it portends for forest structure, timber production, carbon sequestration and multiple other values given that intensified El Niño Southern Oscillation (ENSO) events are expected to increase the frequency and intensity of droughts in the Amazon region. What remains unclear is what characteristics of large trees render them especially vulnerable to drought-induced mortality and how this vulnerability changes with forest degradation.
View Article and Find Full Text PDFSimple mechanistic epidemic models are widely used for forecasting and parameter estimation of infectious diseases based on noisy case reporting data. Despite the widespread application of models to emerging infectious diseases, we know little about the comparative performance of standard computational-statistical frameworks in these contexts. Here we build a simple stochastic, discrete-time, discrete-state epidemic model with both process and observation error and use it to characterize the effectiveness of different flavours of Bayesian Markov chain Monte Carlo (MCMC) techniques.
View Article and Find Full Text PDF