By virtue of their low density and thermal conductivity, aerogels constitute attractive thermal insulators. Of those, aerogel films are best suited for thermal insulation in microsystems. Processes for the synthesis of aerogel films with thicknesses smaller than 2 µm or thicker than 1 mm are well established.
View Article and Find Full Text PDFThermo-analytical studies of thermoset adhesives, either during research and development or in quality assurance activities, involve the application of various analytical equipment for adhesive characterization, from initial mixing to final product decomposition. Gelation is usually measured with rheometers or dynamic mechanical analyzers (DMAs); curing, post-curing, and curing kinetics are often studied using differential scanning calorimetry (DSC). Glass transition temperature (T) is measured via DSC or DMA, and finally, thermal decomposition measurements are done using thermal gravimetric analysis.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2022
In order to use polymers at low Earth orbit (LEO) environment, they must be protected against atomic oxygen (AO) erosion. A promising protection strategy is to incorporate polyhedral oligomeric silsesquioxane (POSS) molecules into the polymer backbone. In this study, the space durability of epoxy-POSS (EPOSS) nanocomposites was investigated.
View Article and Find Full Text PDFDiagn Microbiol Infect Dis
January 2022
The primary objectives were to determine the prevalence of and identify variables associated with respiratory bacterial co-infection in COVID-19 inpatients. Secondary outcomes included length of stay and in-hospital mortality. Eighty-two (11.
View Article and Find Full Text PDFThermally activated shape memory polymers (SMPs) can memorize a temporary shape at low temperature and return to their permanent shape at higher temperature. These materials can be used for light and compact space deployment mechanisms. The control of transition temperature and thermomechanical properties of epoxy-based SMPs can be done using functionalized polyhedral oligomeric silsesquioxane (POSS) additives, which are also known to improve the durability to atomic oxygen in the space environment.
View Article and Find Full Text PDFThe space environment raises many challenges for new materials development and ground characterization. These environmental hazards in space include solar radiation, energetic particles, vacuum, micrometeoroids and debris, and space plasma. In low Earth orbits, there is also a significant concentration of highly reactive atomic oxygen (AO).
View Article and Find Full Text PDFPolyimides (PIs) have been praised for their high thermal stability, high modulus of elasticity and tensile strength, ease of fabrication, and moldability. They are currently the standard choice for both substrates for flexible electronics and space shielding, as they render high temperature and UV stability and toughness. However, their poor thermal conductivity and completely electrically insulating characteristics have caused other limitations, such as thermal management challenges for flexible high-power electronics and spacecraft electrostatic charging.
View Article and Find Full Text PDFIn low Earth orbit (LEO), hazards such as atomic oxygen (AO) or electrostatic discharge (ESD) degrade polymeric materials, specifically, the extensively used polyimide (PI) Kapton. We prepared PI-based nanocomposite films that show both AO durability and ESD protection by incorporating polyhedral oligomeric silsesquioxane (POSS) and carbon nanotube (CNT) additives. The unique methods that are reported prevent CNT agglomeration and degradation of the CNT properties that are common in dispersion-based processes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2015
Polyimides are widely used in thermal blankets covering the external surfaces of spacecrafts due to their space durability and their thermo-optical properties. However, they are susceptible to atomic oxygen (AO) erosion, the main hazard of low Earth orbit (LEO), and to electrical charging. This work demonstrates that liquid phase deposition (LPD) of 100 nm of tin oxide creates a protective coating on Kapton polyimide that has good adherence and is effective in preventing AO-induced surface erosion and in reducing electrical charging.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2014
Chemical vapor deposition (CVD)-grown entangled carbon nanotube (CNT) sheets are characterized by high electrical conductivity and durability to bending and folding. However, since freestanding CNT sheets are mechanically weak, they cannot be used as stand-alone flexible films. In this work, polyimide (PI) infiltration into entangled cup-stacked CNT (CSCNT) sheets was studied to form electrically conducting, robust, and flexible films for space applications.
View Article and Find Full Text PDFThe transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable.
View Article and Find Full Text PDF