Publications by authors named "Bolette Hartmann"

Objective: Glucagon-like peptide 1 (GLP1) is rapidly inactivated by dipeptidyl peptidase 4 (DPP4), but may interact with vagal neurons at its site of secretion. We investigated the role of vagal innervation for handling of oral and i.v.

View Article and Find Full Text PDF

Rapid degradation of glucagon-like peptide-1 (GLP-1) by dipeptidyl peptidase-4 suggests that endogenous GLP-1 may act locally before being degraded. Signaling via the vagus nerve was investigated in 20 truncally vagotomized subjects with pyloroplasty and 10 matched healthy controls. Subjects received GLP-1 (7-36 amide) or saline infusions during and after a standardized liquid mixed meal and a subsequent ad libitum meal.

View Article and Find Full Text PDF

Objective: In healthy subjects, subcutaneous injections of GLP-2 have been shown to elicit dose-related decrease in the bone resorption marker, carboxy-terminal telopeptide of type I collagen (CTX), and have been proposed for the treatment of osteoporosis. This study investigated the relation between GLP-2 exposure and decreases in CTX in order to determine whether high concentrations or prolonged exposure was the most effective mode of administration. High GLP-2 concentrations resulted from iv bolus injections, whereas a more protracted stimulation was obtained by subcutaneous injections and the addition of an inhibitor of GLP-2 degradation, a DPP-4 inhibitor, sitagliptin.

View Article and Find Full Text PDF

Background: Glucagon-like peptide-2 (GLP-2) has been suggested for the treatment of mucositis, but the peptide has also been shown to accentuate colonic dysplasia in carcinogen-treated mice. Recently, an effect on intestinal growth was discovered for glucagon-like peptide-1 (GLP-1), OBJECTIVE: To determine whether endogenous GLP-1 contributes to the healing processes and if exogenous GLP-1 has a potential role in treating mucositis.

Methods: Mice were injected with 5-fluorouracil (5-FU) or saline to induce mucositis and were then treated with GLP-1, GLP-2, GLP-2 (3-33), exendin (9-39) or vehicle.

View Article and Find Full Text PDF

Introduction: Glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2) are secreted in parallel from the intestinal endocrine cells after nutrient intake. GLP-1 is an incretin hormone and analogues are available for the treatment of type 2 diabetes mellitus (T2DM). GLP-2 is an intestinal growth hormone and is shown to promote growth of colonic adenomas in carcinogen treated mice.

View Article and Find Full Text PDF

Purpose: Gastrointestinal mucositis is an unwanted and often dose-limiting side effect to most cancer treatments. Glucagon-like peptide-2 (GLP-2) is a peptide secreted from intestinal L-cells in response to nutrient intake. The peptide is involved in the regulation of apoptosis and proliferation in the intestine.

View Article and Find Full Text PDF
Article Synopsis
  • The study compared the effects of parenteral nutrition (PN) and various enteral feeding methods (FORM, IEN, CEN) on insulin sensitivity and metabolic outcomes in neonatal pigs.
  • Results indicated that continuous enteral feeding and PN led to lower insulin sensitivity and altered gut hormone levels, while intermittent enteral feeding showed more favorable metabolic function.
  • Findings suggest that the method and pattern of feeding impact insulin sensitivity and should be considered in nutritional strategies for neonates.
View Article and Find Full Text PDF

Background: Butyrate has been shown to stimulate intestinal adaptation when added to parenteral nutrition (PN) following small bowel resection but is not available in current PN formulations. The authors hypothesized that pre- and probiotic administration may be a clinically feasible method to administer butyrate and stimulate intestinal adaptation.

Methods And Materials: Neonatal piglets (48 hours old, n = 87) underwent placement of a jugular catheter and an 80% jejunoileal resection and were randomized to one of the following treatment groups: control (20% standard enteral nutrition/80% standard PN), control plus prebiotic (10 g/L short-chain fructooligosaccharides [scFOS]), control plus probiotic (1 × 10(9) CFU Lactobacillus rhamnosus GG [LGG]), or control plus synbiotic (scFOS + LGG).

View Article and Find Full Text PDF

Background: Exogenous Glucagon-Like Peptide-2 (GLP-2) treatment improves intestinal wet weight absorption in short bowel syndrome (SBS) patients. In healthy subjects, administration of GLP-2 increases small intestinal blood flow. The aim of the study was to evaluate the effect of GLP-2 on mesenteric blood flow and dynamic changes in cardiac parameters in SBS patients with jejunostomy and varying length of remnant small intestine.

View Article and Find Full Text PDF

Purpose: Erlotinib, an epidermal-growth-factor receptor inhibitor, belongs to a new generation of targeted cancer therapeutics. Gastrointestinal side-effects are common and have been markedly aggravated when erlotinib is combined with cytostatics. We examined the effects of erlotinib alone and combined with the cytostatic, cisplatin, on the gastrointestinal tract and examined whether glucagon-like peptide-2 (GLP-2), an intestinal hormone with potent intestinotrophic properties, might counteract the possible damaging effects of the treatments.

View Article and Find Full Text PDF

We have previously shown that repeated dosing of glucagon-like peptide-2 (GLP-2) at 10 p.m. in postmenopausal women for 14 days results in a dose-dependent decrease in the nocturnal bone resorption, as assessed by s-CTX.

View Article and Find Full Text PDF

Objective: The gut hormone GLP-2 (glucagon-like peptide-2) seems to be involved in the circadian pattern of bone resorption, whereas parathyroid hormone (PTH) is an established key hormone in bone turnover. Endogenous GLP-2 secretion is lacking in colectomized patients with short-bowel syndrome (SBS) and they have reduced bone mineral density (BMD). The aim of the study was to investigate the anti-resorptive effect (assessed by s-CTX) of 14 days of GLP-2 treatment in these patients and to determine whether 56 days of treatment would improve BMD.

View Article and Find Full Text PDF

Background: The regulation of intestinal growth and development in human neonates is incompletely understood, which hinders the provision of nutrients enterally. The "hindgut" hormones glucagon-like peptides 1 and 2 have been shown to play an important role in the regulation of nutrient assimilation, intestinal growth, and function.

Objective: Our goal was to investigate the production of glucagon-like peptides 1 and 2 in premature human infants and examine the effects of prematurity and feeding on hormone release.

View Article and Find Full Text PDF

Mass spectrometry of HPLC-purified porcine glucagon-like peptide-2 (pGLP-2)(1) revealed a 35 amino acid sequence with C-terminal Ser and Leu, in contrast to the 33 amino acids of human, cow, rat and mouse GLP-2. Synthetic pGLP-2 stimulated cAMP-production in COS-7 cells expressing human GLP-2 (hGLP-2) receptor with the same potency and efficacy as hGLP-2. In anesthetized pigs (n=9) given intravenous pGLP-2 infusions, the half life (t1/2) of intact pGLP-2 (8.

View Article and Find Full Text PDF

Purpose: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors have been introduced as antitumor agents in the treatment of cancers overexpressing the receptor. The treatment has gastrointestinal side effects which may decrease patient compliance and limit the efficacy. Glucagon-like peptide-2 (GLP-2) is an intestinal hormone with potent intestinotrophic properties and therapeutic potential in disorders with compromised intestinal capacity.

View Article and Find Full Text PDF

Objective: Food intake inhibits bone resorption by a mechanism thought to involve gut hormones, and the intestinotrophic glucagon-like peptide 2 (GLP-2) is a candidate because exogenous GLP-2 inhibits bone resorption in humans. The purpose of the study was to investigate patients with short-bowel syndrome (SBS) or total gastrectomy in order to elucidate whether the signal for the meal-induced reduction of bone resorption is initiated from the stomach or the intestine.

Material And Methods: Bone resorption was assessed from the serum concentration of collagen type I C-telopeptide cross-links (s-CTX) and compared with the plasma concentrations of GLP-2.

View Article and Find Full Text PDF

Long-term treatment with dipeptidyl peptidase IV inhibitors (DPPIV-I) or glucagon-like peptide (GLP)-1 analogs may potentially affect intestinal growth by down- or upregulating the intestinotrophic hormone GLP-2. This study compared the intestinotrophic effects of 12-wk administration of vehicle, exendin-4 (Ex-4; 5 nmol/kg bid sc), or DPPIV-I (NN-7201, 10 mg/kg qd orally) in GK rats. Some animals were observed additionally for 9 wk after the end of treatment.

View Article and Find Full Text PDF

Background: Glucagon-like peptide-2 (GLP-2) seems to be a highly specific intestinotrophic mediator. From animal studies, GLP-2 is known to increase in the early neonatal period before it falls to adult level. No studies in newborn infants addressing this specific subject have been published so far.

View Article and Find Full Text PDF

Little is known about the metabolism of the intestinotropic factor glucagon-like peptide-2 (GLP-2); except that it is a substrate for dipeptidyl peptidase IV (DPP-IV) and that it appears to be eliminated by the kidneys. We, therefore, investigated GLP-2 metabolism in six multicatheterized pigs receiving intravenous GLP-2 infusions (2 pmol/kg/min) before and after administration of valine-pyrrolidide (300 mumol/kg; a well characterized DPP-IV inhibitor). Plasma samples were analyzed by radioimmunoassays allowing determination of intact, biologically active GLP-2 and the DPP-IV metabolite GLP-2 (3-33).

View Article and Find Full Text PDF

We have previously shown that a single subcutaneous injection of glucagon-like peptide-2 (GLP-2) at 10 p.m. in postmenopausal women results in a dose-dependent decrease in the nocturnal serum and urine concentrations of fragments derived from the degradation of the C-terminal telopeptide region of collagen type I (s-CTX and u-CTX) and u-DPD, markers of bone resorption.

View Article and Find Full Text PDF

Background And Aim: Glucagon-like peptide-2 (GLP-2) and peptide YY (PYY) are produced in endocrine L-cells of the intestine and secreted in response to food intake. GLP-2 has a trophic effect on the intestinal epithelium, whereas PYY has pro-absorptive effects. It can be speculated that, in inflammatory bowel disease (IBD), the production and secretion of GLP-2 and PYY could be affected as a part of a regulatory mechanism.

View Article and Find Full Text PDF

Background: Peptides of the trefoil factor family (TFF1, TFF2 and TFF3) are cosecreted with mucus from mucus-producing cells in most organ systems and are believed to interact with mucus to form high-viscosity stable gel complexes. In the gastrointestinal tract, they sustain the mucosal barrier, and both injected and orally administered TFF peptide have protective and healing functions in the gastric mucosa.

Aim: To investigate the possible treatment effect of luminally and parenterally administered TFF peptides in experimental colitis in rats.

View Article and Find Full Text PDF

Adaptation of the residual small bowel following resection is dependent on luminal and humoral factors. We aimed to establish if circulating levels of glucagon-like peptide (GLP-2) change under different dietary regimens following resection and to determine if there is a relationship between plasma GLP-2 levels and markers of intestinal adaptation. Four-week-old piglets underwent a 75% proximal small bowel resection (n = 31) or transection (n = 14).

View Article and Find Full Text PDF

Background: Glucagon-like peptide-2 is thought to act as a growth factor for the gut, but the localization of the GLP-2 receptor and mechanism of action on epithelial growth is unclear.

Methods And Results: We found glucagon-like peptide-2 (GLP-2) receptors mainly on subepithelial myofibroblasts in rat, mouse, marmoset and human small and large intestine by immunohistochemistry and in situ hybridisation. By double labelling we found that these GLP-2 receptor immunoreactive cells also produce smooth muscle actin and keratinocyte growth factor (KGF).

View Article and Find Full Text PDF

Our aim was to determine the speed of onset of total parenteral nutrition (TPN)-induced mucosal atrophy, and whether this is associated with changes in intestinal blood flow and tissue metabolism in neonatal piglets. Piglets were implanted with jugular venous and duodenal catheters and either a portal venous or superior mesenteric artery (SMA) blood flow probe. At 3 wk of age, piglets were randomly assigned to receive continuous enteral formula feeding (n = 8) or TPN (n = 17) for 24 or 48 h.

View Article and Find Full Text PDF