Publications by authors named "Boleslaw Szadkowski"

Functional antibacterial textile materials are in great demand in the medical sector. In this paper, we propose a facile, eco-friendly approach to the design of antibacterial biodegradable cotton fabrics. Cotton fiber fabrics were enhanced with a chitosan coating loaded with plant extracts and essential oils.

View Article and Find Full Text PDF

There is great interest in using eco-friendly functional colorants with antibacterial activity to produce colorful textile and plastic products. In this study, we designed, produced, and analyzed a novel multifunctional hybrid color composite colorant with antimicrobial properties, prepared from plant-based products. The new functional color composite was prepared by stabilizing lawsone dye onto amino-silanized cellulose from bamboo fibers.

View Article and Find Full Text PDF

In this study, eco-friendly cotton fabrics with antimicrobial and flame-retardant properties were produced using newly developed bioactive formulations. The new natural formulations combine the biocidal properties of the biopolymer (chitosan (CS)) and essential oil (thyme oil) (EO) with the flame-retardant properties of mineral fillers (silica (SiO), zinc oxide (ZnO), titanium dioxide (TiO), and hydrotalcite (LDH)). The modified cotton eco-fabrics were analyzed in terms of morphology (optical and scanning electron microscopy (SEM)), color (spectrophotometric measurements), thermal stability (thermogravimetric analysis (TGA)), biodegradability, flammability (micro-combustion calorimetry (MCC)), and antimicrobial characteristics.

View Article and Find Full Text PDF

The purpose of this research was to evaluate the impact of selected pigments on the performance of waterborne emulsion paint. Each pigment was incorporated into the paint at 5% /. Density and viscosity measurements as well as the rub-out test were used to test the wet state properties of the colored paint.

View Article and Find Full Text PDF

Natural dyes were extracted from various plant sources and converted into lake pigments based on aluminum and tin. Three different plants (weld, Persian berries, and Brazilwood) were chosen as representative sources of natural dyes. High-performance liquid chromatography (HPLC) and triple-quadrupole mass spectrometry (QqQ MS) were used to identify dyestuffs in the raw extracts.

View Article and Find Full Text PDF

We studied the effects of silicon carbide (SiC) and SiC hybrid systems with different conventional fillers (silica, carbon black, graphene, hydrotalcite, halloysite) on the rheometric measurements, crosslink density, mechanical performance, aging stability, morphology, thermal behaviour, and flammability of ethylene-propylene-diene (EPDM) rubber composites. The hybrid filler systems showed technically promising synergetic effects on the performance of the EPDM composites. A pronounced reinforcing effect in EPDM composites filled with hybrid SiC filler systems was noted.

View Article and Find Full Text PDF

Due to growing restrictions on the use of halogenated flame retardant compounds, there is great research interest in the development of fillers that do not emit toxic compounds during thermal decomposition. Polymeric composite materials with reduced flammability are increasingly in demand. Here, we demonstrate that unmodified graphene and carbon nanotubes as well as basalt fibers or flakes can act as effective flame retardants in polymer composites.

View Article and Find Full Text PDF

Multicolor ethylene-norbornene (EN) composites filled with three different spinel pigments (Cobalt Green-PG50, Zinc Iron Yellow-PY 119, Praseodym Yellow-PY159) were prepared by melt mixing and characterized in terms of their stability under destructive environmental conditions. The EN films were subjected to accelerated aging by ultraviolet (UV) photooxidation for 300 h, 600 h, or 900 h. The mechanical performance of the EN composites was investigated in static and dynamic mechanical tests.

View Article and Find Full Text PDF

In this paper, we present the design of reinforced silica-filled elastomer composites exhibiting a high transparency, high mechanical performance in static and dynamic conditions, and improved electrical conductivity. Two different imidazolium ionic liquids (ILs) were used with increasing loads: 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIMTFSI) and 1-butyl-3-methylimidazolium tetrachloroaluminate (BMIMAlCl). The composites were prepared in a two-roll mill.

View Article and Find Full Text PDF

Two different silane treatment methods were used to improve the reinforcing activity of carbon nanofibers (CNF) in acrylonitrile-butadiene rubber (NBR) composites. The first method was chemical silanization with [3-(2-aminoethylamino)propyl]trimethoxysilane (APTS) in ethanol solution, preceded by oxidation of the CNF with HSO/HNO. The second method was direct incorporation of silanes during preparation of the composites (in-situ silanization).

View Article and Find Full Text PDF

In this paper, we assess various natural earth pigments as potential colorants and stabilizers for ethylene-norbornene copolymer composites. Several cycloolefin copolymer (COC) composites colored with 2 wt% of a selected pigment were prepared using a two-step mixing method. The aging resistance of the polymer composites was investigated in terms of changes to their mechanical properties, following accelerated aging in the full sunlight spectrum (100, 200, 300, 400, and 500 h).

View Article and Find Full Text PDF

Perlite and vermiculite are naturally occurring minerals, commonly used by industry to obtain highly thermoisolative and/or non-flammable materials. However, there has been little research into the preparation and application of rubber compounds containing these inexpensive mineral fillers. Here, we show the benefits of perlite and vermiculite minerals as fillers for ethylene-propylene rubber (EPM) composites.

View Article and Find Full Text PDF

The purpose of this work was to prepare new biodegradable starch-cellulose composites, with starch, using casein and gelatin as natural nutrients. The physico-chemical properties of the starch films and cellulose fabrics with starch coatings were studied by Fourier transformation infrared analysis, laser confocal scanning microscopy (LCSM), scanning electron microscopy (SEM), UV-Vis spectroscopy, swelling tests, mechanical tests, thermal analysis thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The susceptibility of the starch films to biodegradation was investigated, together with their resistance to thermo-oxidative aging.

View Article and Find Full Text PDF

This study set out to investigate the impact of aluminum-magnesium hydroxycarbonates (LHs) with various Mg/Al ratios on the formation of hybrid pigments. The colorants were also evaluated for their flame-retardant properties. In the first part of the study, the hybrid pigments were submitted to comprehensive characterization using time-of-flight secondary ion mass spectrometry (TOF-SIMS), Al solid-state nuclear magnetic resonance (NMR) spectroscopy, powder X-ray diffraction analysis (XRD), thermogravimetric analysis (TGA), and N adsorption as well as scanning and transmission electron microscopy (SEM/STEM).

View Article and Find Full Text PDF

In this study, we produced a new organic-inorganic hybrid pigment based on a natural chromophore. Lawsone was selected as the active organic compound and incorporated into aluminum-magnesium hydroxycarbonate (LH). The hydroxynaphthoquinone derivative lawsone (.

View Article and Find Full Text PDF

This study presents the preparation and characterization of new organic-inorganic pigments based on aluminum-magnesium hydroxycarbonate (LH) and azo dyes. Solvent resistance studies, XRD, SEM, and TGA confirmed the successful formation of hybrid pigments, which were characterized in terms of their physicochemical properties. The new hybrid pigments were applied in acrylonitrile-butadiene (NBR) and ethylene-propylene (EPM) rubber composites and cured with sulfur and peroxide curing systems, respectively.

View Article and Find Full Text PDF

In this study, novel organic⁻inorganic composites were prepared by the complexation of dicarboxylic azo dye (AD) with aluminum⁻magnesium hydroxycarbonate (AlMg⁻LH). This procedure provides an effective method for the stabilization of dicarboxylic organic chromophores on an AlMg-LH host. The structures of the hybrid composites were examined by X-ray diffraction (XRD), secondary ion mass spectrometry (TOF-SIMS), 27-Al solid-state nuclear magnetic resonance (NMR) spectroscopy, thermogravimetric analysis (TGA) and scanning transmission electron microscopy (STEM).

View Article and Find Full Text PDF

In this study, hybrid pigments based on carminic acid (CA) were synthesized and applied in polymer materials. Modification of aluminum-magnesium hydroxycarbonate (LH) with CA transformed the soluble chromophore into an organic-inorganic hybrid colorant. Secondary ion mass spectroscopy (TOF-SIMS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and UV-Vis spectroscopy were used to study the structure, composition, and morphology of the insoluble LH/CA colorant.

View Article and Find Full Text PDF

This paper describes the fabrication of a new hybrid pigment made from 1,2-dihydroxyanthraquinone (alizarin) on a mixed oxide host (aluminum-magnesium hydroxycarbonate, LH). Various tools were applied to better understand the interactions between the organic (alizarin) and inorganic (LH) components, including ion mass spectroscopy (TOF-SIMS), 27-Aluminm solid-state nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). TOF-SIMS showed that modification of the LH had been successful and revealed the presence of characteristic ions CH₇O₄Mg⁺ and CH₆O₅Al, suggesting interactions between the organic chromophore and both metal ions present in the mixed oxide host.

View Article and Find Full Text PDF