The disruption of Cu homeostasis is associated with the pathogenesis of many diseases and can result in alterations in Cu isotope fractionation. Changes in the Cu isotope ratio (Cu/Cu) of body fluids and tissues have been observed in liver disorders, cancers, and other diseases, displaying diagnostic/prognostic potential. However, it is not entirely clear whether certain physiological or lifestyle factors may also influence the bodily Cu isotopic composition, potentially obfuscating the signature of the pathology.
View Article and Find Full Text PDFBackground: Single-particle ICP-mass spectrometry (SP-ICP-MS) is a powerful method for micro/nano-particle (MNP) sizing. Despite the outstanding evolution of the technique in the last decade, most studies still rely on traditional approaches based on (1) the use of integrated intensity as the analytical signal and (2) the calculation of the transport efficiency (TE). However, the increasing availability of MNP standards and advancements in hardware and software have unveiled new venues for MNP sizing, including TE-independent and time-based approaches.
View Article and Find Full Text PDFNumerous factors can contribute to the incidence or exacerbation of peripheral neuropathy induced by oxaliplatin (OXA). Recently, platinum accumulation in the spinal cord of mice after OXA exposure, despite the efficient defenses of the central nervous system, has been demonstrated by our research group, expanding the knowledge about its toxicity. One hypothesis is platinum accumulation in the spinal cord causes oxidative damage to neurons and impairs mitochondrial function.
View Article and Find Full Text PDFAgronomic biofortification using selenium nanoparticles (SeNPs) shows potential for addressing selenium deficiency but further research on SeNPs-plants interaction is required before it can be effectively used to improve nutritional quality. In this work, single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) was used for tracing isotopically labeled SeNPs (SeNPs) in Oryza sativa L. tissues.
View Article and Find Full Text PDFHigh-precision isotopic analysis of mercury (Hg) using multi-collector ICP-mass spectrometry (MC-ICP-MS) is a powerful method for obtaining insight into the sources, pathways and sinks of this toxic metal. Modification of a commercially available mercury analyzer (Teledyne Leeman Labs, Hydra IIc - originally designed for quantification of Hg through sample combustion, collection of the Hg vapor on a gold amalgamator, subsequent controlled release of Hg and detection using cold vapor atomic absorption spectrometry CVAAS) enabled the system to be used for the direct high-precision Hg isotopic analysis of solid samples using MC-ICP-MS - i.e.
View Article and Find Full Text PDFIn this work, laser ablation (LA) was characterized as a method for sampling and introducing microplastic particles (MPs) into an inductively coupled plasma (ICP) for subsequent C monitoring using an ICP-mass spectrometer operated in single-event mode. MPs of different types (PS, PMMA, and PVC) and sizes (2-20 μm) were introduced intactly. The laser energy density did not affect the particle sampling across a wide range (0.
View Article and Find Full Text PDFHypomagnesemia was historically prevalent in individuals with type 1 diabetes mellitus (T1DM), but contemporary results indicate an incidence comparable to that in the general population, likely due to improved treatment in recent decades, resulting in better glycemic control. However, a recent study found a significant difference between the serum Mg isotopic composition of T1DM individuals and controls, indicating that disruptions to Mg homeostasis persist. Significant deviations were also found in samples taken one year apart.
View Article and Find Full Text PDFThis study describes an interlaboratory comparison (ILC) among nine (9) laboratories to evaluate and validate the standard operation procedure (SOP) for single-particle (sp) ICP-TOFMS developed within the context of the Horizon 2020 project ACEnano. The ILC was based on the characterization of two different Pt nanoparticle (NP) suspensions in terms of particle mass, particle number concentration, and isotopic composition. The two Pt NP suspensions were measured using icpTOF instruments (TOFWERK AG, Switzerland).
View Article and Find Full Text PDFThe ability to improve nanoparticle delivery to solid tumors is an actively studied domain, where various mechanisms are looked into. In previous work, the authors have looked into nanoparticle size, tumor vessel normalization, and disintegration, and here it is aimed to continue this work by performing an in-depth mechanistic study on the use of ciRGD peptide co-administration. Using a multiparametric approach, it is observed that ciRGD can improve nanoparticle delivery to the tumor itself, but also to tumor cells specifically better than vessel normalization strategies.
View Article and Find Full Text PDFBiogenic palladium nanoparticles (bio-Pd NPs) are used for the reductive transformation and/or dehalogenation of persistent micropollutants. In this work, H (electron donor) was produced in situ by an electrochemical cell, permitting steered production of differently sized bio-Pd NPs. The catalytic activity was first assessed by the degradation of methyl orange.
View Article and Find Full Text PDFNanoparticle (NP) delivery to solid tumors remains an actively studied field, where several recent studies have shed new insights into the underlying mechanisms and the still overall poor efficacy. In the present study, Au NPs of different sizes were used as model systems to address this topic, where delivery of the systemically administered NPs to the tumor as a whole or to tumor cells specifically was examined in view of a broad range of tumor-associated parameters. Using non-invasive imaging combined with histology, immunohistochemistry, single-cell spatial RNA expression and image-based single cell cytometry revealed a size-dependent complex interaction of multiple parameters that promoted tumor and tumor-cell specific NP delivery.
View Article and Find Full Text PDFThe production of biogenic palladium nanoparticles (bio-Pd NPs) is widely studied due to their high catalytic activity, which depends on the size of nanoparticles (NPs). Smaller NPs (here defined as <100 nm) are more efficient due to their higher surface/volume ratio. In this work, inductively coupled plasma-mass spectrometry (ICP-MS), flow cytometry (FCM) and transmission electron microscopy (TEM) were combined to obtain insight into the formation of these bio-Pd NPs.
View Article and Find Full Text PDFAfter 40 years of development, inductively coupled plasma-mass spectrometry (ICP-MS) can hardly be considered as a novel technique anymore. ICP-MS has become the reference when it comes to multi-element bulk analysis at (ultra)trace levels, as well as to isotope ratio determination for metal(loid)s. However, over the last decade, this technique has managed to uncover an entirely new application field, providing information in a variety of contexts related to the individual analysis of single entities (, nanoparticles, cells, or micro/nanoplastics), thus addressing new societal challenges.
View Article and Find Full Text PDFBiolistic intracellular delivery of functional macromolecules makes use of dense microparticles which are ballistically fired onto cells with a pressurized gun. While it has been used to transfect plant cells, its application to mammalian cells has met with limited success mainly due to high toxicity. Here we present a more refined nanotechnological approach to biolistic delivery with light-triggered self-assembled nanobombs (NBs) that consist of a photothermal core particle surrounded by smaller nanoprojectiles.
View Article and Find Full Text PDFFractionation effects related to evaporation and condensation had a major impact on the current elemental and isotopic composition of the Solar System. Although isotopic fractionation of moderately volatile elements has been observed in tektites due to impact heating, the exact nature of the processes taking place during hypervelocity impacts remains poorly understood. By studying Fe in microtektites, here we show that impact events do not simply lead to melting, melt expulsion and evaporation, but involve a convoluted sequence of processes including condensation, variable degrees of mixing between isotopically distinct reservoirs and ablative evaporation during atmospheric re-entry.
View Article and Find Full Text PDFSingle cell - tandem ICP-mass spectrometry (SC-ICP-MS/MS) was used for the determination of the absolute amount of Pt (coming from exposure to various concentration levels of cisplatin as a chemotherapeutic drug) and five endogenous elements (P, S, Fe, Cu and Zn) in individual human cells of three different types - Raji, Jurkat and Y79. Optimum conditions were obtained by using a sample introduction unit transporting cell suspension containing approx. 5 × 10 cells per mL at a flow rate of 10 μL min to a nebulizer with narrow internal diameter (250 μm i.
View Article and Find Full Text PDFDifferent approaches for the determination of the Sr/Sr isotope ratio of high-Rb glass are compared in this work to assess the suitability of minimally invasive approaches for applications on medieval stained glass (from the ancient Abbey of Stavelot in Belgium). It was found that pneumatic nebulization multicollector inductively coupled plasma-mass spectrometry (PN-MC-ICP-MS) after acid digestion and chromatographic isolation of the target analyte out of the sample matrix can still be seen as the preferred method for the high-precision isotopic analysis of Sr in glass with high Rb and rare-earth element (REE) concentrations. Alternatively, the use of laser ablation (LA) for sample introduction is a powerful technique for the direct analysis of solid samples.
View Article and Find Full Text PDFPhotodynamic and photothermal cell killing at the surface of tissues finds applications in medicine. However, a lack of control over heat dissipation following a treatment with light might damage surrounding tissues. A new strategy to kill cells at the surface of tissues is reported.
View Article and Find Full Text PDFLongitudinal in vivo monitoring of transplanted cells is crucial to perform cancer research or to assess the treatment outcome of cell-based therapies. While several bio-imaging techniques can be used, magnetic resonance imaging (MRI) clearly stands out in terms of high spatial resolution and excellent soft-tissue contrast. However, MRI suffers from low sensitivity, requiring cells to be labeled with high concentrations of contrast agents.
View Article and Find Full Text PDFMetal-on-metal (MoM) prostheses, in which the bearing surfaces are made of a metal alloy, may release metal ions upon wear and corrosion, potentially inducing both local and systemic toxicity. As the systemic cobalt concentration increases with the degree of implant wear, this concentration needs to be monitored as a means of assessing implant function and the risk of adverse effects. Here, we report on the development, validation and application of a method to quantitatively assess these Co concentrations in whole blood, based on the combination of volumetric absorptive microsampling (VAMS) and inductively coupled plasma - mass spectrometry (ICP-MS).
View Article and Find Full Text PDFIn this work, the effects of using collision/reaction cell (CRC) technology in quadrupole-based ICP-MS (ICP-QMS) instrumentation operated in single-particle (SP) mode have been assessed. The influence of (i) various CRC gases, (ii) gas flow rates, (iii) nanoparticle (NP) sizes and (iv) NP types was evaluated using Ag, Au and Pt NPs with both a traditional ICP-QMS instrument and a tandem ICP-mass spectrometer. It has been shown that using CRC technology brings about a significant increase in the NP signal peak width (from 0.
View Article and Find Full Text PDFWhales accumulate mercury (Hg), but do not seem to show immediate evidence of toxic effects. Analysis of different tissues (liver, kidney, muscle) and biofluids (blood, milk) from a pod of stranded long-finned pilot whales (Globicephala melas) showed accumulation of Hg as a function of age, with a significant decrease in the MeHg fraction. Isotopic analysis revealed remarkable differences between juvenile and adult whales.
View Article and Find Full Text PDFLiver and muscle tissue of tusks ( Brosme brosme) have been analyzed for their THg and MeHg concentrations and Hg isotopic signatures for tracing Hg pollution along the Norwegian coast. Clear differences between tissue types and locations were established. At five of the eight locations, the Hg concentration in muscle exceeded the maximum allowable level of 0.
View Article and Find Full Text PDF