The elemental dynamics and interactions within deadwood profoundly influence carbon sequestration and nutrient cycling in forest ecosystems. Recent studies have investigated macronutrient cycling during deadwood decay of specific plants, yet the dynamics and interactions of micronutrients, trace elements, and the elementome across species and decay stages remain unexplored. Here, we investigated the elementome and their coupling relationships across five decay stages of downed deadwood (DDW) from four dominant species (Hippophae rhamnoides, Populus purdomii, Abies fabri, and Picea brachytyla) along the Hailuogou Glacier primary successional chronosequence.
View Article and Find Full Text PDFTire wear particles (TWP) are emerging contaminants in the soil environment due to their widespread occurrence and potential threat to soil health. However, their impacts on soil biogeochemical processes remain unclear. Here, we investigated the effects of TWP at various doses and their leachate on soil respiration and denitrification using a robotized continuous-flow incubation system in upland soil.
View Article and Find Full Text PDFSoil contamination by cadmium (Cd) is an increasing environmental concern that potentially jeopardizes both crop productivity and human health. Silicon (Si), the Earth's second most abundant element, has shown a significant potential in reducing Cd uptake by crops. However, there is still a lack of quantitative data on the beneficial effects of Si in reducing Cd toxicity, thereby making it more difficult to ensure safe crop production.
View Article and Find Full Text PDFSoil respiration (R) is projected to be substantially affected by climate change, impacting the storage, equilibrium, and movement of terrestrial carbon (C). However, uncertainties surrounding the responses of R to climate change and soil nitrogen (N) enrichment are linked to mechanisms specific to diverse climate zones. A comprehensive meta-analysis was conducted to address this, evaluating the global effects of warming, increased precipitation, and N enrichment on R across various climate zones and ecosystems.
View Article and Find Full Text PDFThe rhizosphere is generally depleted in nutrients, but as a hotspot of microbial activity it fosters crop P uptake. We hypothesized that P contents of water extractable nanoparticles (<0.1 μm) and small sized colloids (<0.
View Article and Find Full Text PDFThe significance of sulphur (S) availability for crop yield and quality is highlighted under the global S deficiency scenario. However, little is known about the temporal trend in belowground organic S mineralisation when restoring land to productive agricultural systems, particularly for the deeper soil parts. Therefore, we investigated the decomposition of S-labelled methionine in surface (0-30 cm) and subsurface soil (30-60 cm and 60-90 cm) over a 48-year recultivation chronosequence (sampled after1, 8, 14, 24 and 48 years).
View Article and Find Full Text PDFVegetation restoration in metallic tailing reservoirs is imperative to restore the post-mining degraded ecosystems. Extracellular enzymes determine microbial resource acquisition in soils, yet the mechanisms controlling the enzyme activity and stoichiometry during vegetation restoration in metallic tailing reservoirs remain elusive. Here, we investigated the variations and drivers of C-, N- and P-acquiring enzymes together with microbial community along a 50-year vegetation restoration chronosequence in the China's largest vanadium titano-magnetite tailing reservoir.
View Article and Find Full Text PDFIncreases in near-surface ozone (O3) concentrations is a global environmental problem. High-concentration O3 induces stress in plants, which can lead to visible damage to plants, reduced photosynthesis, accelerated aging, inhibited growth, and can even plant death. However, its impact has not been comprehensively evaluated because of the response differences between individual plant species, environmental O3 concentration, and duration of O3 stress in plants.
View Article and Find Full Text PDFWith over one-third of terrestrial net primary productivity transferring to the litter layer annually, the carbon release from litter serves as a crucial valve in atmospheric carbon dioxide concentrations. However, few quantitative global projections of litter carbon release rate in response to climate change exist. Here, we combined a global foliar litter carbon release dataset (8973 samples) to generate spatially explicitly estimates of the response of their residence time (τ) to climate change.
View Article and Find Full Text PDFOrganic and mineral fertilization increase crop productivity, but their combined effects on soil quality index (SQI) and ecosystem multifunctionality (EMF, defined as the capacity of soils to simultaneously provide multiple functions and services) are not clear. We conducted a 13-year field trial in North China Plain to examine how five maize-derived organic fertilizers (straw, manure, compost, biogas residue, and biochar) at equal C input rate (3.2 t C ha), with or without nitrogen (N) fertilization influenced topsoil (0-15 cm) physico-chemical properties, activities of enzymes responsible for carbon (C), N, and phosphorus (P) cycling, as well as SQI and soil EMF.
View Article and Find Full Text PDFPlant growth-promoting bacteria (PGPB) offer a promising solution for mitigating heavy metals (HMs) stress in crops, yet the mechanisms underlying the way they operate in the soil-plant system are not fully understood. We therefore conducted a meta-analysis with 2037 observations to quantitatively evaluate the effects and determinants of PGPB inoculation on crop growth and HMs accumulation in contaminated soils. We found that inoculation increased shoot and root biomass of all five crops (rice, maize, wheat, soybean, and sorghum) and decreased metal accumulation in rice and wheat shoots together with wheat roots.
View Article and Find Full Text PDFSoils in hyper-arid climates, such as the Chilean Atacama Desert, show indications of past and present forms of life despite extreme water limitations. We hypothesize that fog plays a key role in sustaining life. In particular, we assume that fog water is incorporated into soil nutrient cycles, with the inland limit of fog penetration corresponding to the threshold for biological cycling of soil phosphorus (P).
View Article and Find Full Text PDFThe purpose of this study was to determine the protective factors that contribute to the prevention of children aged 0-5 years from developing dental cavities. The oral hygiene practices of 266 children aged 0-5 years were assessed through surveys administered from 2019 to 2022 to identify clinical, dietary, social and parental factors. The Partial Least Squares (PLS) Regression and Artificial Neuron Networks (ANN) Models were used to determine protective factors associated with the prevention of dental cavities in children.
View Article and Find Full Text PDFDue to its large number of advantages compared to traditional subtractive manufacturing techniques, additive manufacturing (AM) has gained increasing attention and popularity. Among the most common AM techniques is fused filament fabrication (FFF), usually referred to by its trademarked name: fused deposition modeling (FDM). This is the most efficient technique for manufacturing physical three-dimensional thermoplastics, such that FDM machines are nowadays the most common.
View Article and Find Full Text PDFGrazing exclusion has been implemented worldwide as a nature-based solution for restoring degraded grassland ecosystems that arise from overgrazing. However, the effect of grazing exclusion on soil nitrogen cycle processes, subsequent greenhouse gas emissions and underlying mechanisms remain unclear. Here, we investigated the effect of four-year grazing exclusion on plant communities, soil properties, and soil nitrogen cycle-related functional gene abundance in an alpine meadow on the Qinghai-Tibet Plateau.
View Article and Find Full Text PDFThe return of decomposed straw represents a less explored potential option for reducing NO emissions. However, the mechanisms underlying the effects of decomposed straw return on soil NO mitigation are still not fully clear. Therefore, we used a helium atmosphere robotized continuous flow incubation system to compare the soil NO and N emissions from four treatments: CK (control: no straw), WS (wheat straw), IWS (wheat straw decomposed with Irpex lacteus), and PWS (wheat straw decomposed with Phanerochaete chrysosporium).
View Article and Find Full Text PDFStraw incorporation (SI) combined with N fertilizer has been shown to affect soil NO emission and N-related functional microbes in agriculture. However, the responses of NO emission, community structure of nitrifiers and denitrifiers and related microbial functional genes to straw management strategies in the winter wheat season in China remain unclear. Here, we conducted a two-season experiment in a winter wheat field in Ningjing County, northern China, to examine four treatments: no fertilizer with (N0S1) and without maize straw (N0S0); N fertilizer with (N1S1) and without maize straw (N1S0), and their effects on NO emissions, soil chemical parameters, crop yield, as well as the dynamics of nitrifying and denitrifying microbial communities.
View Article and Find Full Text PDFIntroduction: Soybean adapts to phosphorus-deficient soils through three important phosphorus acquisition strategies, namely altered root conformation, exudation of carboxylic acids, and symbiosis with clumping mycorrhizal fungi. However, the trade-offs and regulatory mechanisms of these three phosphorus acquisition strategies in soybean have not been researched.
Methods: In this study, we investigated the responses of ten different soybean varieties to low soil phosphorus availability by determining biomass, phosphorus accumulation, root morphology, exudation, and mycorrhizal colonization rate.
Anthropogenic activities have increased atmospheric N, precipitation, and temperature events in terrestrial ecosystems globally, with N deposition increasing by 3- to 5-fold during the previous century. Despite decades of scientific research, no consensus has been achieved on the impact of climate conditions on soil respiration (Rs). Here, we reconstructed 110 published studies across diverse biomes, magnitudes, and driving variables to evaluate how Rs responds to N addition, altered precipitation (both enhanced and reduced precipitation or precipitation changes), and warming.
View Article and Find Full Text PDFUnlabelled: Soil nutrient pools in the dry low Arctic are likely to be released under climatic change and this bioavailability has the potential to increase both terrestrial and aquatic productions. As well as the direct effect of warming, external disturbances such as nutrient deposition and grazing can also drive ecosystem change. This study in the low Arctic Kangerlussuaq area of southwest Greenland compared soil nutrient pools in terms of both topographic position on a catena and by soil depth in two small catchments with contrasting muskox abundance.
View Article and Find Full Text PDFUnderstanding the physicochemical factors affecting nanoparticle transport in porous media is critical for their environmental application. Water-saturated column experiments were conducted to investigate the effects of input concentration (Co), ionic strength (IS), and sand grain size on the transport of poly(acrylic acid-co-maleic acid) coated magnetite nanoparticles (PAM@MNP). Mass recoveries in the column effluent ranged from 45.
View Article and Find Full Text PDFThe extreme environmental conditions and lack of water on the soil surface in hyperarid deserts hamper microbial life, allowing only highly specialized microbial communities to the establish colonies and survive. Until now, the microbial communities that inhabit or have inhabited soils of hyperarid environments at greater depths have been poorly studied. We analyzed for the first time the variation in microbial communities down to a depth of 3.
View Article and Find Full Text PDFPhysical erosion and chemical weathering rates beneath glaciers are expected to increase in a warming climate with enhanced melting but are poorly constrained. We present a global dataset of cations in meltwaters of 77 glaciers, including new data from 19 Asian glaciers. Our study shows that contemporary cation denudation rates (CDRs) beneath glaciers (2174 ± 977 Σ*meq m year) are ~3 times higher than two decades ago, up to 10 times higher than ice sheet catchments (~150-2000 Σ*meq m year), up to 50 times higher than whole ice sheet means (~30-45 Σ*meq m year) and ~4 times higher than major non-glacial riverine means (~500 Σ*meq m year).
View Article and Find Full Text PDF