Proc Natl Acad Sci U S A
June 2024
Bovine milk-derived exosomes have recently emerged as a promising nano-vehicle for the encapsulation and delivery of macromolecular biotherapeutics. Here we engineer high purity bovine milk exosomes (mExo) with modular surface tunability for oral delivery of small interfering RNA (siRNA). We utilize a low-cost enrichment method combining casein chelation with differential ultracentrifugation followed by size exclusion chromatography, yielding mExo of high concentration and purity.
View Article and Find Full Text PDFObjective: Genome wide association studies (GWAS) for type 2 diabetes (T2D) have identified genetic loci that often localise in non-coding regions of the genome, suggesting gene regulation effects. We combined genetic and transcriptomic analysis from human islets obtained from brain-dead organ donors or surgical patients to detect expression quantitative trait loci (eQTLs) and shed light into the regulatory mechanisms of these genes.
Methods: Pancreatic islets were isolated either by laser capture microdissection (LCM) from surgical specimens of 103 metabolically phenotyped pancreatectomized patients (PPP) or by collagenase digestion of pancreas from 100 brain-dead organ donors (OD).
Aim: To determine if a 4-week course of 14 mg weekly GLP-1 agonist LY2428757 combined with 3 mg or 2 mg daily gastrin analogue TT223 (LY+TT223) results in long-term glycaemic changes.
Materials And Methods: Patients with in adequately-controlled type 2 diabetes mellitus ±metformin (N=151) were randomized to a 4-week course of LY+TT223 (3 mg), LY+TT223 (2 mg), LY+TT223 placebo (LY-only) or LY placebo+TT223 placebo (placebo). The primary objective was change in HbA1c from baseline to 5 month safter completion of therapy (i.
Objective: A novel dual GIP and GLP-1 receptor agonist, LY3298176, was developed to determine whether the metabolic action of GIP adds to the established clinical benefits of selective GLP-1 receptor agonists in type 2 diabetes mellitus (T2DM).
Methods: LY3298176 is a fatty acid modified peptide with dual GIP and GLP-1 receptor agonist activity designed for once-weekly subcutaneous administration. LY3298176 was characterised in vitro, using signaling and functional assays in cell lines expressing recombinant or endogenous incretin receptors, and in vivo using body weight, food intake, insulin secretion and glycemic profiles in mice.
Aims/hypothesis: Islet amyloid deposits contribute to beta cell dysfunction and death in most individuals with type 2 diabetes but non-invasive methods to determine the presence of these pathological protein aggregates are currently not available. Therefore, we examined whether florbetapir, a radiopharmaceutical agent used for detection of amyloid-β deposits in the brain, also allows identification of islet amyloid in the pancreas.
Methods: Saturation binding assays were used to determine the affinity of florbetapir for human islet amyloid polypeptide (hIAPP) aggregates in vitro.
Loss of functional islet β-cell mass through cellular death or dedifferentiation is thought to lead to dysglycemia during the progression from obesity to type 2 diabetes. To assess these processes in a mouse model of obesity, we performed measures of circulating cell-free differentially methylated insulin II ( Ins2) DNA as a biomarker of β-cell death and aldehyde dehydrogenase 1 family member A3 (ALDH1A3) and forkhead box 01 (Foxo1) immunostaining as markers of β-cell dedifferentiation. Eight-week-old, C57BL/6J mice were fed a low-fat diet (LFD; 10% kcal from fat) or a high-fat diet (HFD; 60% kcal from fat) and were followed longitudinally for up to 13 wk to measure glycemic control and β-cell mass, death, and dedifferentiation.
View Article and Find Full Text PDFAims/hypothesis: Pancreatic islet beta cell failure causes type 2 diabetes in humans. To identify transcriptomic changes in type 2 diabetic islets, the Innovative Medicines Initiative for Diabetes: Improving beta-cell function and identification of diagnostic biomarkers for treatment monitoring in Diabetes (IMIDIA) consortium ( www.imidia.
View Article and Find Full Text PDFIncretin and insulin responses to nutrient loads are suppressed in persons with diabetes, resulting in decreased glycemic control. Agents including sulfonylureas and dipeptidyl peptidase-4 inhibitors (DPP4i) partially reverse these effects and provide therapeutic benefit; however, their modes of action limit efficacy. Because somatostatin (SST) has been shown to suppress insulin and glucagonlike peptide-1 (GLP-1) secretion through the Gi-coupled SST receptor 5 (SSTR5) isoform in vitro, antagonism of SSTR5 may improve glycemic control via intervention in both pathways.
View Article and Find Full Text PDFLY2881835 is a selective, potent, and efficacious GPR40 agonist. The objective of the studies described here was to examine the pharmacological properties of LY2881835 in preclinical models of T2D. Significant increases in insulin secretion were detected when LY2881835 was tested in primary islets from WT mice but not in islets from GPR40 KO mice.
View Article and Find Full Text PDFImpaired insulin signaling and the associated insulin-resistance in liver, adipose tissue, and skeletal muscle, represents a hallmark of the pathogenesis of type 2-diabetes-mellitus. Here we show that in the liver of db/db mice, a murine model of obesity, type 2 diabetes, and dyslipidemia, the elevated activities of mitogen-activated protein kinases (MAPK; ERK1/2 and p38), and Akt/PKB are abolished by rosiglitazone-treatment, which normalizes blood glucose in db/db mice. This is unequivocal evidence of a functional link between the activation of the MAPK specific inflammatory-pathway and high-blood sugar.
View Article and Find Full Text PDFBackground And Purpose: Insulin secretion from isolated pancreatic islets is a pivotal assay in developing novel insulin secretagogues, given its good correlation with in vivo efficacy. Because the supply of human islets is limited, this assay is typically run with rodent islets, which do not address species differences and are low-throughput, because of the size matching or volume normalization required. Here we have evaluated the suitability of human re-aggregated islets for this assay.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
November 2013
Extracellular ATP released from pancreatic β-cells acts as a potent insulinotropic agent through activation of P2 purinergic receptors. Ectonucleotidases, a family of membrane-bound nucleotide-metabolizing enzymes, regulate extracellular ATP levels by degrading ATP and related nucleotides. Ectonucleotidase activity affects the relative proportion of ATP and its metabolites, which in turn will impact the level of purinergic receptor stimulation exerted by extracellular ATP.
View Article and Find Full Text PDFThe translation factor eIF5A is the only protein known to contain the amino acid hypusine, which is formed posttranslationally. Hypusinated eIF5A is necessary for cellular proliferation and responses to extracellular stressors, and has been proposed as a target for pharmacologic therapy. Here, we provide the first comprehensive characterization of a novel polyclonal antibody (IU-88) that specifically recognizes the hypusinated eIF5A.
View Article and Find Full Text PDFLaser microdissection (LMD) is a technique that allows the recovery of selected cells and tissues from minute amounts of parenchyma. The dissected cells can be used for a variety of investigations, such as transcriptomic or proteomic studies, DNA assessment or chromosomal analysis. An especially challenging application of LMD is transcriptome analysis, which, due to the lability of RNA, can be particularly prominent when cells are dissected from tissues that are rich of RNases, such as the pancreas.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
December 2012
The GPR119 receptor plays an important role in the secretion of incretin hormones in response to nutrient consumption. We have studied the ability of an array of naturally occurring endocannabinoid-like lipids to activate GPR119 and have identified several lipid receptor agonists. The most potent receptor agonists identified were three N-acylethanolamines: oleoylethanolamine (OEA), palmitoleoylethanolamine, and linoleylethanolamine (LEA), all of which displayed similar potency in activating GPR119.
View Article and Find Full Text PDFIdentifying novel mechanisms to enhance glucagon-like peptide-1 (GLP-1) receptor signaling may enable nascent medicinal chemistry strategies with the aim of developing new orally available therapeutic agents for the treatment of type 2 diabetes mellitus. Therefore, we tested the hypothesis that selectively modulating the low-affinity GLP-1 receptor agonist, oxyntomodulin, would improve the insulin secretory properties of this naturally occurring hormone to provide a rationale for pursuing an unexplored therapeutic approach. Signal transduction and competition binding studies were used to investigate oxyntomodulin activity on the GLP-1 receptor in the presence of the small molecule GLP-1 receptor modulator, 4-(3-benzyloxyphenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine (BETP).
View Article and Find Full Text PDFIslet β cell dysfunction resulting from inflammation, ER stress, and oxidative stress is a key determinant in the progression from insulin resistance to type 2 diabetes mellitus. It was recently shown that the enzyme deoxyhypusine synthase (DHS) promotes early cytokine-induced inflammation in the β cell. DHS catalyzes the conversion of lysine to hypusine, an amino acid that is unique to the translational elongation factor eIF5A.
View Article and Find Full Text PDFBackground: Glucagon-like peptide-1 (GLP-1) receptor agonists are novel agents for type 2 diabetes treatment, offering glucose-dependent insulinotropic effects, reduced glucagonemia and a neutral bodyweight or weight-reducing profile. However, a short half-life (minutes), secondary to rapid inactivation by dipeptidyl peptidase-IV (DPP-IV) and excretion, limits the therapeutic potential of the native GLP-1 hormone. Recently, the GLP-1 receptor agonist exenatide injected subcutaneously twice daily established a novel therapy class.
View Article and Find Full Text PDFIn isolated rat pancreatic alpha-cells, glucose, arginine, and the sulfonylurea tolbutamide stimulated glucagon release. The effect of glucose was abolished by the KATP-channel opener diazoxide as well as by mannoheptulose and azide, inhibitors of glycolysis and mitochondrial metabolism. Glucose inhibited KATP-channel activity by 30% (P<0.
View Article and Find Full Text PDFLiver X receptors (LXRs) alpha and beta, transcription factors of a nuclear hormone receptor family, are expressed in pancreatic islets as well as glucagon-secreting and insulin-secreting cell lines. Culture of pancreatic islets or insulin-secreting MIN6 cells with a LXR specific agonist T0901317 caused an increase in glucose-dependent insulin secretion and islet insulin content. The stimulatory effect of T0901317 on insulin secretion was observed only after >72 h of islet culture with the compound.
View Article and Find Full Text PDFPatch-clamp recordings and glucagon release measurements were combined to determine the role of plasma membrane ATP-sensitive K+ channels (KATP channels) in the control of glucagon secretion from mouse pancreatic alpha-cells. In wild-type mouse islets, glucose produced a concentration-dependent (half-maximal inhibitory concentration [IC50]=2.5 mmol/l) reduction of glucagon release.
View Article and Find Full Text PDFThe effect of the imidazoline compound LY374284 has been studied in pancreatic islets of db/db mice, a progressive model of diabetes. In perifusion experiments, pancreatic islets of db/db mice showed a progressive deterioration of glucose-induced insulin release with increasing age, whereby the first phase of insulin secretion was almost completely abolished and the second phase was substantially decreased by 15 weeks of age. LY374284 restored the first phase of glucose-induced insulin secretion in islets of 16-week-old db/db mice to 70% of that observed in islets isolated from age-matched nondiabetic db/1 mice.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
October 2003
The effect of the novel imidazoline compound 2-[2-(4,5-dihydro-1H-imidazol-2-yl)-1-(5-methyl-2,3-dihydrobenzofuran-7-yl)-ethyl]-pyridine (NNC77-0020) on stimulus-secretion coupling and hormone secretion was investigated in mouse pancreatic islets and isolated alpha- and beta-cells. In the presence of elevated glucose concentrations NNC77-0020 stimulated insulin secretion concentration dependently (EC(50) 64 nM) by 200% without affecting the whole-cell K(+) current or cytoplasmic Ca(2+) levels. Capacitance measurements in single mouse beta-cells showed that intracellular application of NNC77-0020 via the recording pipette enhanced Ca(2+)-dependent exocytosis.
View Article and Find Full Text PDFTo investigate the hormonal and cellular selectivity of the prandial glucose regulators, we have undertaken a series of experiments, in which we characterised the effects of repaglinide and nateglinide on ATP-sensitive potassium ion (KATP) channel activity, membrane potential and exocytosis in rat pancreatic alpha-cells and somatotrophs. We found a pharmacological dissociation between the actions on KATP channels and exocytosis and suggest that compounds that, unlike repaglinide, have direct stimulatory effects on exocytosis in somatotrophs and alpha- and beta-cells, such as sulphonylureas and nateglinide, may have a clinically undesirable general stimulatory effect on cells within the endocrine system.
View Article and Find Full Text PDF