The sustainable solution to the environmental problem of polymeric materials calls for efficient and well-controlled ring-opening polymerization catalytic systems. Inspired by the highly reactive and stereospecific bimetallic catalysts, three kinds of bimetallic Salen-Mn catalysts supported by biaryl linking moieties are synthesized and applied to polymerization catalysis of lactide (LA) and ϵ-caprolactone (ϵ-CL) in this work. The polymerization is initiated in situ by the ring-opening of epoxide compounds, in which the ionic cocatalyst could accelerate the reaction process.
View Article and Find Full Text PDFAs a representative class of sustainable polymer materials, biodegradable polymers have attracted increasing interest in recent years. Despite significant advance of related polymerization techniques, realizing high sequence-control and easy-handling in ring-opening (co)polymerizations still remains a central challenge. To this end, a promising solution is the development of valence-variable metal-based catalysts for redox-induced switchable polymerization of cyclic esters, cyclic ethers, epoxides, and CO .
View Article and Find Full Text PDF