Spatial control of RhoGTPase-inactivating GAP components remains largely enigmatic. We describe a brain-specific RhoGAP splice variant, BARGIN (BGIN), which comprises a combination of BAR, GAP, and partial CIN phosphatase domains spliced from adjacent SH3BP1 and CIN gene loci. Excision of BGIN exon 2 results in recoding of a 42-amino acid N-terminal stretch.
View Article and Find Full Text PDFThe exocyst complex plays a critical role in targeting and tethering vesicles to specific sites of the plasma membrane. These events are crucial for polarized delivery of membrane components to the cell surface, which is critical for cell motility and division. Though Rho GTPases are involved in regulating actin dynamics and membrane trafficking, their role in exocyst-mediated vesicle targeting is not very clear.
View Article and Find Full Text PDFCell motility requires the spatial and temporal coordination of forces in the actomyosin cytoskeleton with extracellular adhesion. The biochemical mechanism that coordinates filamentous actin (F-actin) assembly, myosin contractility, adhesion dynamics, and motility to maintain the balance between adhesion and contraction remains unknown. In this paper, we show that p21-activated kinases (Paks), downstream effectors of the small guanosine triphosphatases Rac and Cdc42, biochemically couple leading-edge actin dynamics to focal adhesion (FA) dynamics.
View Article and Find Full Text PDFThe NADPH oxidase family, consisting of Nox1-5 and Duox1-2, catalyzes the regulated formation of reactive oxygen species (ROS). Highly expressed in the colon, Nox1 needs the organizer subunit NoxO1 and the activator subunit NoxA1 for its activity. The tyrosine kinase c-Src is necessary for the formation of invadopodia, phosphotyrosine-rich structures which degrade the extracellular matrix (ECM).
View Article and Find Full Text PDFThe NADPH oxidase (Nox) proteins catalyze the regulated formation of reactive oxygen species (ROS), which play key roles as signaling molecules in several physiological and pathophysiological processes. ROS generation by the Nox1 member of the Nox family is necessary for the formation of extracellular matrix (ECM)-degrading, actin-rich cellular structures known as invadopodia. Selective inhibition of Nox isoforms can provide reversible, mechanistic insights into these cellular processes in contrast to scavenging or inhibition of ROS production.
View Article and Find Full Text PDFNADPH oxidase (Nox) family enzymes are one of the main sources of cellular reactive oxygen species (ROS), which have been implicated in several physiological and pathophysiological processes. To date seven members of this family have been reported, including Nox1-5 and Duox1 and 2. With the exception of Nox2, the regulation of the Nox enzymes is still poorly understood.
View Article and Find Full Text PDFOne major route of intoxication by Bacillus anthracis (anthrax) spores is via their ingestion and subsequent uptake by the intestinal epithelium. Anthrax edema toxin (ETx) is an adenylate cyclase that causes persistent elevation of cAMP in intoxicated cells. NADPH oxidase enzymes (Nox1-Nox5, Duox1 and 2) generate reactive oxygen species (ROS) as components of the host innate immune response to bacteria, including Nox1 in gastrointestinal epithelial tissues.
View Article and Find Full Text PDFCofilin-actin bundles (rods), which form in axons and dendrites of stressed neurons, lead to synaptic dysfunction and may mediate cognitive deficits in dementias. Rods form abundantly in the cytoplasm of non-neuronal cells in response to many treatments that induce rods in neurons. Rods in cell lysates are not stable in detergents or with added calcium.
View Article and Find Full Text PDFThe mechanisms that determine localized formation of reactive oxygen species (ROS) through NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase (Nox) family members in nonphagocytic cells are unknown. We show that the c-Src substrate proteins Tks4 (tyrosine kinase substrate with four SH3 domains) and Tks5 are functional members of a p47(phox)-related organizer superfamily. Tks proteins selectively support Nox1 and Nox3 (and not Nox2 and Nox4) activity in reconstituted cellular systems and interact with the NoxA1 activator protein through an Src homology 3 domain-mediated interaction.
View Article and Find Full Text PDFChronic myeloid leukemia (CML) is a lethal hematological disorder caused by the p210(Bcr-Abl) oncogene. Previous studies have suggested that p210(Bcr-Abl) transformation contributes to homing and retention defects, typical of immature myeloid cells in CML, by attenuating chemotactic response to stromal-derived factor-1alpha (SDF-1alpha). As Rho family GTPases are key regulators of the cytoskeleton and have been previously found to interact with p210(Bcr-Abl), this study aimed to determine whether p210(Bcr-Abl) signaling affects SDF-1alpha chemotaxis through Rho GTPase signaling.
View Article and Find Full Text PDFRac1 and Rac2, members of the small Rho GTPase family, play essential roles in coordinating directional migration and superoxide production during neutrophil responses to chemoattractants. Although earlier studies in Rac1 and Rac2 knockout mice have demonstrated unique roles for each Rac isoform in chemotaxis and NADPH oxidase activation, it is still unclear how human neutrophils use Rac1 and Rac2 to achieve their immunological responses to foreign agent stimulation. In the current study, we used TAT dominant-negative Rac1-T17N and Rac2-T17N fusion proteins to acutely alter the activity of Rac1 and Rac2 individually in human neutrophils.
View Article and Find Full Text PDFCell migration involves the cooperative reorganization of the actin and microtubule cytoskeletons, as well as the turnover of cell-substrate adhesions, under the control of Rho family GTPases. RhoA is activated at the leading edge of motile cells by unknown mechanisms to control actin stress fiber assembly, contractility, and focal adhesion dynamics. The microtubule-associated guanine nucleotide exchange factor (GEF)-H1 activates RhoA when released from microtubules to initiate a RhoA/Rho kinase/myosin light chain signaling pathway that regulates cellular contractility.
View Article and Find Full Text PDFAntioxid Redox Signal
October 2009
The NADPH oxidase (Nox) enzyme family generates reactive oxygen species (ROS) that contribute to cell signaling, innate immune responses, proliferation, and transcription. The signaling mechanisms that regulate this important enzyme family are only beginning to be understood. Evidence is emerging which suggests that phosphorylation of Nox and/or their regulatory components may be important means of modulating their activity.
View Article and Find Full Text PDFCellular stimuli generate reactive oxygen species (ROS) via the local action of NADPH oxidases (Nox) to modulate cytoskeletal organization and cell migration through unknown mechanisms. Cofilin is a major regulator of cellular actin dynamics whose activity is controlled by phosphorylation/dephosphorylation at Ser3. Here we show that Slingshot-1L (SSH-1L), a selective cofilin regulatory phosphatase, is involved in H(2)O(2)-induced cofilin dephosphorylation and activation.
View Article and Find Full Text PDFActin and its key regulatory component, cofilin, are found together in large rod-shaped assemblies in neurons subjected to energy stress. Such inclusions are also enriched in Alzheimer's disease brain, and appear in transgenic models of neurodegeneration. Neuronal insults, such as energy loss and/or oxidative stress, result in rapid dephosphorylation of the cellular cofilin pool prior to its assembly into rod-shaped inclusions.
View Article and Find Full Text PDFAnthrax lethal factor (LF), secreted by Bacillus anthracis, interacts with protective antigen to form a bipartite toxin (lethal toxin [LT]) that exerts pleiotropic biological effects resulting in subversion of the innate immune response. Although the mitogen-activated protein kinase kinases (MKKs) are the major intracellular protein targets of LF, the pathology induced by LT is not well understood. The statin family of HMG-coenzyme A reductase inhibitors have potent anti-inflammatory effects independent of their cholesterol-lowering properties, which have been attributed to modulation of Rho family GTPase activity.
View Article and Find Full Text PDFMembers of the Fgd (faciogenital dysplasia) gene family encode a group of critical guanine nucleotide exchange factors (GEFs), which, by specifically activating Cdc42, control cytoskeleton-dependent membrane rearrangements. In its first characterization, we find that FGD2 is expressed in antigen-presenting cells, including B lymphocytes, macrophages, and dendritic cells. In the B lymphocyte lineage, FGD2 levels change with developmental stage.
View Article and Find Full Text PDFThe guanine nucleotide exchange factor (GEF) Vav1 plays an important role in T-cell activation and tumorigenesis. In the GEF superfamily, Vav1 has the ability to interact with multiple families of Rho GTPases. The structure of the Vav1 DH-PH-CRD/Rac1 complex to 2.
View Article and Find Full Text PDFNADPH oxidase (Nox) family enzymes are one of the main sources of cellular reactive oxygen species (ROS), which have been shown to function as second messenger molecules. To date, seven members of this family have been reported, including Nox1-5 and Duox1 and -2. With the exception of Nox2, the regulation of the Nox enzymes is still poorly understood.
View Article and Find Full Text PDFNeutrophils and related phagocytic leukocytes are notoriously difficult to transfect, making the introduction of proteins into these cells for biological studies problematic. We describe here two methods that have been successfully used to introduce proteins into intact primary human neutrophils while maintaining normal functional responses. The first utilizes a lipid-based reagent that transports proteins into intact neutrophils.
View Article and Find Full Text PDFThe detection of Ras superfamily GTPase activity in neutrophils is important when studying signaling events elicited by various ligands and cellular processes. Substantial progress in monitoring GTPase activation has been made in recent years by the development of high-affinity probes for small GTPases. These probes are created by fusing a high-affinity GTPase-binding domain derived from a specific downstream effector protein to glutathione-S-transferase (GST).
View Article and Find Full Text PDF