In this exploratory study, we searched for associations between the two most common diseases of the oral cavity-dental caries and periodontal diseases-taking into account additional factors, such as personalized clinical pictures (the individual risk factors of the patient), based on the method of a multivariate data analysis of the molecular changes in the composition of human gingival crevicular fluid (GCF). For this purpose, a set of synchrotron Fourier-transform infrared spectroscopy (FTIR) spectra of gingival crevicular fluid samples from patients with different demographics, levels of dental caries development and periodontal diseases, and the presence/absence of concomitant chronic diseases were obtained and analyzed. Using a set of techniques (v-, F-, Chi-square tests; a principal component analysis (PCA); and the hierarchical clustering of principal components (HCPCs)) implemented in the R package FactoMineR allowed us to assess the relationship between the principal components (PCs) and characteristics of the respondents.
View Article and Find Full Text PDFGiant impact-driven redox processes in the atmosphere and magma ocean played crucial roles in the evolution of Earth. However, because of the absence of rock records from that time, understanding these processes has proven challenging. Here, we present experimental results that simulate the giant impact-driven reactions between iron and volatiles (HO and CO) using x-ray free electron laser (XFEL) as fast heat pump and structural probe.
View Article and Find Full Text PDFThis work unveils the idea that the cariogenic status of the oral cavity (the presence of active caries lesions) can be predicted via a lineshape analysis of the infrared spectral signatures of the secondary structure of proteins in dental biofilms. These spectral signatures that work as natural markers also show strong sensitivity to the application in patients of a so-called modulator-a medicinal agent (a pelleted mineral complex with calcium glycerophosphate). For the first time, according to our knowledge, in terms of deconvolution of the complete spectral profile of the amide I and amide II bands, significant intra- and intergroup differences were determined in the secondary structure of proteins in the dental biofilm of patients with a healthy oral cavity and with a carious pathology.
View Article and Find Full Text PDFThis article presents a technique of scattering-type scanning near-field optical microscopy (s-SNOM) based on scanning probe microscopy as a nanoscale-resolution chemical visualization technique of the structural changes in photoresist thin films. Chemical investigations were conducted in the nanometer regime by highly concentrated near-field infrared on the sharp apex of the metal-coated atomic force microscopy (AFM) tip. When s-SNOM was applied along with Fourier transform infrared spectroscopy to characterize the extreme UV- and electron-beam (e-beam)-exposed hydrogen silsesquioxane films, line and space patterns of half-pitch 100, 200, 300, and 500 nm could be successfully visualized prior to pattern development in the chemical solutions.
View Article and Find Full Text PDFWe assemble a film of a phosphocholine-based lipid and a crystalline conjugated polymer using hydrophobic interactions between the alkyl tails of the lipid and alkyl side chains of the polymer, and demonstrated its selective gas adsorption properties and the polymer's improved light absorption properties. We show that a strong attractive interaction between the polar lipid heads and CO was responsible for 6 times more CO being adsorbed onto the assembly than N, and that with repeated CO adsorption and vacuuming procedures, the assembly structures of the lipid-polymer assembly were irreversibly changed, as demonstrated by grazing-incidence X-ray diffraction during the gas adsorption and desorption. Despite the disruption of the lipid structure caused by adsorbed polar gas molecules on polar head groups, gas adsorption could promote orderly alkyl chain packing by inducing compressive strain, resulting in enhanced electron delocalization of conjugated backbones and bathochromic light absorption.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
June 2022
A non-invasive, image-based analytic method utilizing scattering-type scanning near-field optical microscopy (s-SNOM) is suggested to evaluate the phase separation behavior of lamella-forming polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) block copolymer films. Taking advantage of the penetrability of the tip-enhanced IR signal into the films, the spatio-spectral maps of each component are constructed. Subsequently, the effect of a sole and combinatorial applications of the self-assembly procedures, such as solvent vapor annealing (SVA) and/or thermal annealing (TA), on the spatial distribution of PS or PMMA components is quantitatively assessed in terms of the areal portions of the PS domain, PMMA domain, and the mixed zone that is adjacent to the domain border.
View Article and Find Full Text PDFThe synthesis of sandwich-shaped multinuclear silver complexes with planar penta- and tetranuclear wheel-shaped silver units and a central anion, [Ag()(A)](OTf), , = 4 or 5 and A = OH or F or Cl, is reported, along with complete spectroscopic and structural characterization. An NMR mechanistic study reveals that silver complexes were formed in the following order: → → → . The central hydroxides in and exhibit exotic physical properties due to the confined environment inside the complex.
View Article and Find Full Text PDFAlbite is one of the major constituents in the crust. We report here that albite, when subjected to hydrous cold subduction conditions, undergoes hitherto unknown breakdown into hydrated smectite, moganite, and corundum, above 2.9 GPa and 290 °C or about 90 km depth conditions, followed by subsequent breakdown of smectite into jadeite above 4.
View Article and Find Full Text PDFBiodegradable poly-[(R)-3-hydroxybutyrate--(R)-3-hydroxyhexanoates] (PHBHx) have been widely studied for their applications in potentially replacing petroleum-based thermoplastics. In this study, the effect of the high molecular weight (n = 3400) poly(ethylene glycol) (PEG) blended in the films of PHBHx with different ratios of PEG was investigated using chemical FTIR imaging. Chemical IR images and FTIR spectra measured with increasing temperature revealed that PEG plays an important role in changing the kinetics of PHBHx crystallization.
View Article and Find Full Text PDFPolyimide (PI) composite films with thicknesses of approximately 100 µm were prepared via a sol⁻gel reaction of 3-aminopropyltrimethoxysilane (APTMS) with poly(amic acid) (PAA) composite solutions using a thermal imidization process. PAA was synthesized by a conventional condensation reaction of two diamines, 3,5-diaminobenzoic acid (DABA), which has a carboxylic acid side group, and 2,2'-bis(trifluoromethyl)benzidine (TFMB), with 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) in N,N-dimethylacetamide (DMAc). The PAA⁻silica composite solutions were prepared by mixing PAA with carboxylic acid side groups and various amounts of APTMS in a sol⁻gel process in DMAc using hydrochloric acid as a catalyst.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
April 2018
Immiscible aromatic polyimide (PI) blend films and a PI blend film incorporated with thermally conductive boron nitride (BN) were prepared, and their phase separation behaviors were examined by optical microscopy and FTIR imaging. The 2,2'-bis(trifluoromethyl)benzidine (TFMB)-containing and 4,4'-thiodianiline (TDA)-containing aromatic PI blend films and a PI blend/BN composite film show two clearly separated regions; one region is the TFMB-rich phase, and the other region is the TDA-rich phase. The introduction of BN induces morphological changes in the immiscible aromatic PI blend film without altering the composition of either domain.
View Article and Find Full Text PDFIn this study, the thermal denaturation mechanism and secondary structures of two types of human insulin nanoparticles produced by a process of solution-enhanced dispersion by supercritical fluids using dimethyl sulfoxide (DMSO) and ethanol (EtOH) solutions of insulin are investigated using spectroscopic approaches and molecular dynamics calculations. First, the temperature-dependent IR spectra of spherical and rod-shaped insulin nanoparticles prepared from DMSO and EtOH solution, respectively, are analyzed using principal component analysis (PCA) and 2D correlation spectroscopy to obtain a deeper understanding of the molecular structures and thermal behavior of the two insulin particle shapes. All-atom molecular dynamics (AAMD) calculations are performed to investigate the influence of the solvent molecules on the production of the insulin nanoparticles and to elucidate the geometric differences between the two types of nanoparticles.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2008
Gold nanoparticles modified with a newly synthesized cinnamate moiety (CI-AuNPs) were prepared using the phase method. The cinnamate moiety, which is well known for its photoreactive properties, could be reacted by means of radical attack and UV irradiation. Crosslinking of this moiety by the two reactions causes aggregation of the CI-AuNPs, which demonstrates the feasibility of fabricating self-assembled spherical structures by means of chemical crosslinking of gold nanoparticles through two distinct mechanisms, namely, photocycloaddition and radical reaction upon addition of an initiator.
View Article and Find Full Text PDFThe photochemical reaction and molecular reorientation of a novel photosensitive polyester, poly[oxy(4-n-butyl-3,5-benzoate)oxy-1,4-phenylenediacryloyl] (PPDA-C4BZ), which contains n-butyl side groups and 1,4-phenylenediacryloyl units (PDA chromophores) in the main chain, are reported in detail. We applied two-dimensional (2D) correlation analysis for the infrared (IR) and ultraviolet (UV) absorption spectra of nanoscaled films of PPDA-C4BZ to establish the sequence of the photo-induced segmental reorientations that result from UV irradiation. The photochemical reaction was found to have a greater effect on the polymer's main chains than on its side groups and to induce the reorientation of the polymer molecules.
View Article and Find Full Text PDFA novel photosensitive polyimide, poly(4,4'-stilbenylene 4,4'-oxidiphthalimide) (ODPA-Stilbene PSPI) was newly synthesized. The most surprising feature of this PSPI is that the PSPI films irradiated with linear polarized ultraviolet light (LPUVL) can favorably induce a unidirectional alignment of liquid crystals (LCs) in contact with the film surface and further switch the director of the unidirectionally aligned LCs from a perpendicular direction to a parallel direction with respect to the polarization direction of LPUVL by simply controlling the exposure dose in the irradiation process. These LPUVL-irradiated films were found to provide high anchoring energy to LCs, always giving very stable, homogeneous cells with unidirectionally aligned LCs regardless of the LC alignment directions.
View Article and Find Full Text PDFPoly(p-phenylene-3,6-bis(4-(n-butoxy)phenyloxy)pyromellitimide) (C4-PMDA-PDA PI), a well-defined model brush polymer composed of a rodlike polymer backbone with two bristles per repeat unit, was the first reported polyimide to align liquid crystals perpendicular to the rubbing direction at the rubbed film surface. In the present study, we used polarized infrared (IR) spectroscopy and 2D correlation analyses of the resulting IR spectra to study nanoscale films of C4-PMDA-PDA PI rubbed at various rubbing densities. The results of these studies allowed us to establish the nature and sequence of the rubbing-induced segmental reorientations that occur in the polymer molecules at the film surface.
View Article and Find Full Text PDF