Drag-based swimming is usually accompanied with the shape change of rowing appendages to generate asymmetric force during the power stroke and recovery stroke. To implement this in an aquatic robot, one may actively control the surface area of its legs during the swimming. However, a small sized robot with a limited number of actuators should adjust the surface area of legs in passive manner.
View Article and Find Full Text PDFBioinspir Biomim
May 2018
The locomotion of water beetles has been widely studied in biology owing to their remarkable swimming skills. Inspired by the oar-like legs of water beetles, designing a robot that swims under the principle of drag-powered propulsion can lead to highly agile mobility. But its motion can easily be discontinuous and jerky due to backward motions (i.
View Article and Find Full Text PDF