Much is understood about 1-dimensional spin chains in terms of entanglement properties, physical phases, and integrability. However, the Lie algebraic properties of the Hamiltonians describing these systems remain largely unexplored. In this work, we provide a classification of all Lie algebras generated by the terms of 2-local spin chain Hamiltonians, or so-called dynamical Lie algebras, on 1-dimensional linear and circular lattice structures.
View Article and Find Full Text PDFVariational quantum computing schemes train a loss function by sending an initial state through a parametrized quantum circuit, and measuring the expectation value of some operator. Despite their promise, the trainability of these algorithms is hindered by barren plateaus (BPs) induced by the expressiveness of the circuit, the entanglement of the input data, the locality of the observable, or the presence of noise. Up to this point, these sources of BPs have been regarded as independent.
View Article and Find Full Text PDF