Approximately 40% of colorectal cancer (CRC) cases are characterized by KRAS mutations, rendering them insensitive to most CRC therapies. While the reasons for this resistance remain incompletely understood, one key aspect is genetic complexity: in CRC, oncogenic KRAS is most commonly paired with mutations that alter WNT and P53 activities ("RAP"). Here, we demonstrate that elevated WNT activity upregulates canonical (NF-κB) signalling in both and human RAS mutant tumours.
View Article and Find Full Text PDFColorectal cancer (CRC) is the second most deadly cancer worldwide. One key reason is the failure of therapies that target RAS proteins, which represent approximately 40% of CRC cases. Despite the recent discovery of multiple alternative signalling pathways that contribute to resistance, durable therapies remain an unmet need.
View Article and Find Full Text PDFThroughout an individual's life, somatic cells acquire cancer-associated mutations. A fraction of these mutations trigger tumour formation, a phenomenon partly driven by the interplay of mutant and wild-type cell clones competing for dominance; conversely, other mutations function against tumour initiation. This mechanism of 'cell competition', can shift clone dynamics by evaluating the relative status of clonal populations, promoting 'winners' and eliminating 'losers'.
View Article and Find Full Text PDFIdentifying a common oncogenesis pathway among tumors with different oncogenic mutations is critical for developing anti-cancer strategies. Here, we performed transcriptome analyses on two different models of Drosophila malignant tumors caused by Ras activation with cell polarity defects (RasV12/scrib-/-) or by microRNA bantam overexpression with endocytic defects (bantam/rab5-/-), followed by an RNAi screen for genes commonly essential for tumor growth and malignancy. We identified that Juvenile hormone Inducible-21 (JhI-21), a Drosophila homolog of the L-amino acid transporter 1 (LAT1), is upregulated in these malignant tumors with different oncogenic mutations and knocking down of JhI-21 strongly blocked their growth and invasion.
View Article and Find Full Text PDFEpithelial cancer tissues often possess polyploid giant cells, which are thought to be highly oncogenic. However, the mechanisms by which polyploid giant cells are generated in tumor tissues and how such cells contribute to tumor progression remain elusive. We previously noticed in Drosophila imaginal epithelium that cells mutant for the endocytic gene rab5 exhibit enlarged nuclei.
View Article and Find Full Text PDF