Publications by authors named "Bojian Zhang"

Methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) polymorphisms are known risk factors for vascular diseases due to the impact on folate metabolism dysfunction and homocysteine (Hcy) accumulation. This study aimed to investigate the association between folate metabolism risk and hemorrhagic risk in moyamoya disease (MMD). In this prospective study, we enrolled 350 MMD patients with complete genotype data for MTHFR and MTRR.

View Article and Find Full Text PDF

Background: Understanding the molecular mechanisms in immunosuppressive regulation is crucial for improving immunotherapeutic strategies. Macrophages, the major immune cells in tumor microenvironment (TME), play a dual role in tumor progression. CD180, primarily expressed in macrophages, remains unclear and requires further investigation.

View Article and Find Full Text PDF

Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by stenosis or occlusion of the internal carotid artery, thus leading to ischaemic and haemorrhagic strokes. Although genetic studies have identified ring finger protein 213 (RNF213) as a susceptibility gene, the low disease penetrance suggests that a secondary trigger, such as infection, may initiate disease onset. This study aimed to characterize the innate immune cell profile of peripheral blood mononuclear cells (PBMCs) of MMD patients via mass cytometry (CyTOF).

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small non-coding RNAs (18-26 nucleotides) that regulate gene expression by interacting with target mRNAs, affecting various physiological and pathological processes. miRTarBase, a database of experimentally validated miRNA-target interactions (MTIs), now features over 3 817 550 validated MTIs from 13 690 articles, significantly expanding its previous version. The updated database includes miRNA interactions with therapeutic agents, revealing roles in drug resistance and therapeutic strategies.

View Article and Find Full Text PDF

Moyamoya disease (MMD) is a rare, chronic, and progressive cerebrovascular disorder with unclear underlying causes and mechanisms. Previous studies suggest a potential involvement of endothelial-mesenchymal transition (EndMT) in the pathogenesis of MMD. This study aimed to explore the contribution of EndMT-related genes (ERGs) in MMD.

View Article and Find Full Text PDF

Biological organisms often have remarkable multifunctionality through intricate structures, such as concurrent shape morphing and stiffness variation in the octopus. Soft robots, which are inspired by natural creatures, usually require the integration of separate modules to achieve these various functions. As a result, the whole structure is cumbersome, and the control system is complex, often involving multiple control loops to finish a required task.

View Article and Find Full Text PDF

Growing evidence suggests that systemic immune and inflammatory responses may play a critical role in the formation and development of aneurysms. Exploring the differences between single intracranial aneurysm (SIA) and multiple IAs (MIAs) could provide insights for targeted therapies. However, there is a lack of comprehensive and detailed characterization of changes in circulating immune cells in MIAs.

View Article and Find Full Text PDF

At present, there is limited research on the mechanisms underlying moyamoya disease (MMD). Herein, we aimed to determine the role of glutamine in MMD pathogenesis, and 360 adult patients were prospectively enrolled. Human brain microvascular endothelial cells (HBMECs) were subjected to Integrin Subunit Beta 4 (ITGB4) overexpression or knockdown and atorvastatin.

View Article and Find Full Text PDF

Background: Moyamoya disease (MMD) stands as a prominent cause of stroke among children and adolescents in East Asian populations. Although a growing body of evidence suggests that dysregulated inflammation and autoimmune responses might contribute to the development of MMD, a comprehensive and detailed understanding of the alterations in circulating immune cells associated with MMD remains elusive.

Methods: In this study, we employed a combination of single-cell RNA sequencing (scRNA-seq), mass cytometry and RNA-sequencing techniques to compare immune cell profiles in peripheral blood samples obtained from patients with MMD and age-matched healthy controls.

View Article and Find Full Text PDF

Image retrieval performance can be improved by training a convolutional neural network (CNN) model with annotated data to facilitate accurate localization of target regions. However, obtaining sufficiently annotated data is expensive and impractical in real settings. It is challenging to achieve accurate localization of target regions in an unsupervised manner.

View Article and Find Full Text PDF

Background: The study aimed to investigate the association between nonalcoholic fatty liver disease (NAFLD) and ischemic stroke events after revascularization in patients with Moyamoya disease (MMD).

Methods: This study prospectively enrolled 275 MMD patients from September 2020 to December 2021. Patients with alcoholism and other liver diseases were excluded.

View Article and Find Full Text PDF

Moyamoya disease (MMD) is a cerebrovascular disorder marked by progressive arterial narrowing, categorized into six stages known as Suzuki stages based on angiographic features. Growing evidence indicates a pivotal role of systemic immune and inflammatory responses in the initiation and advancement of MMD. This study employs high-dimensional mass cytometry to reveal the immunophenotypic characteristics of peripheral blood immune cells (PBMCs) at various Suzuki stages, offering insights into the progression of MMD.

View Article and Find Full Text PDF
Article Synopsis
  • Moyamoya disease (MMD) is a rare cerebrovascular disorder marked by narrowing arteries and the formation of collateral vessels, making diagnosis and treatment challenging due to unclear causes.
  • The MOYAOMICS project aims to investigate the molecular aspects of MMD using various omics technologies, alongside assessing the role of gut microbiota and advanced imaging techniques for better diagnosis and treatment options.
  • The project's findings could lead to improved early detection, targeted therapies, and better clinical management of MMD, ultimately enhancing patient outcomes.
View Article and Find Full Text PDF

The progress from intelligent interactions and supplemented/augmented reality requires artificial skins to shift from the single-functional tactile paradigm. Dual-responsive sensors that can both detect pre-contact proximal events and tactile pressure levels enrich the perception dimensions and deliver additional cognitive information. Previous dual-responsive sensors show very limited utilizations only in proximity perception or approaching switches.

View Article and Find Full Text PDF
Article Synopsis
  • Coalbed methane is a clean energy source that improves safety in coal mining but produces harmful pulverized coal during extraction, which hinders methane production.
  • This study developed a new fracturing proppant using calcium sulfoaluminate particles and sand, which creates permeable cement that effectively controls pulverized coal migration.
  • The new proppant demonstrated strong compressive strength and permeability, significantly blocking pulverized coal larger than 7.67 μm, achieving up to 96% control efficiency, thus enhancing coalbed methane extraction.
View Article and Find Full Text PDF

Here we propose an inverted evanescently-coupled waveguide modified uni-traveling-carrier photodiode (IECWG MUTC-PD) and verify the character numerically. In this photodiode, the epitaxial structure is inverted from p-i-n to n-i-p, and a diluted waveguide is applied. The material of capacitance control layer is optimized to realize energy band compensation and capacitance control.

View Article and Find Full Text PDF

Background: Coronavirus disease 2019 (COVID-19) has become a global pandemic which may compromise the management of vascular emergencies. An uncompromised treatment for ruptured abdominal aortic aneurysm (rAAA) during such a health crisis represents a challenge. This study aimed to demonstrate the treatment outcomes of rAAA and the perioperative prevention of cross-infection under the COVID-19 pandemic.

View Article and Find Full Text PDF

To improve the resistance to CO corrosion of oil well cement, soap-free emulsion polymerization was used to prepare a soap-free latex (PSAC) with sodium styrene sulfonate (SSS) and nano-SiO (SSS/SiO) as the ionic copolymer emulsifier. The effects of SSS/SiO on the performance, thermal stability, and latex particle morphology of the PSAC were investigated through zeta potential, TGA, and TEM measurements, respectively. The carbonation resistance properties of cement with PSAC were evaluated, and the anticorrosion mechanism of the PSAC cement was determined by SEM, EDS, XRD, and Si NMR analyses.

View Article and Find Full Text PDF

An amphoteric composite polymer (hereinafter referred to as PAADM) as a high temperature-resistant cement retarder was prepared by intercalated polymerization method with 2-crylamido-2-methylpropanesulfonic acid (AMPS), acrylic acid (AA) and two diallyl dimethyl ammonium chloride (DMDAAC) as monomers, and modified montmorillonite as an active polymerization filler. The synthetic composite polymer was characterized by Fourier transform infrared spectroscopy (FT-IR), H nuclear magnetic resonance (H-NMR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The results of the aforementioned characterization showed that the synthesized copolymer (PAADM) has an intercalation/exfoliation composite structure and excellent thermal stability.

View Article and Find Full Text PDF