Acquired genetic alterations commonly drive resistance to endocrine and targeted therapies in metastatic breast cancer , however the underlying processes engendering these diverse alterations are largely uncharacterized. To identify the mutational processes operant in breast cancer and their impact on clinical outcomes, we utilized a well-annotated cohort of 3,880 patient samples with paired tumor-normal sequencing data. The mutational signatures associated with apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) enzymes were highly prevalent and enriched in post-treatment compared to treatment-naïve hormone receptor-positive (HR+) cancers.
View Article and Find Full Text PDFBackground: RNA editing has been described as promoting genetic heterogeneity, leading to the development of multiple disorders, including cancer. The cytosine deaminase APOBEC3B is implicated in tumor evolution through DNA mutation, but whether it also functions as an RNA editing enzyme has not been studied.
Results: Here, we engineer a novel doxycycline-inducible mouse model of human APOBEC3B-overexpression to understand the impact of this enzyme in tissue homeostasis and address a potential role in C-to-U RNA editing.
The single-stranded DNA cytosine-to-uracil deaminase APOBEC3B is an antiviral protein implicated in cancer. However, its substrates in cells are not fully delineated. Here APOBEC3B proteomics reveal interactions with a surprising number of R-loop factors.
View Article and Find Full Text PDFThe APOBEC3 family of DNA cytosine deaminases comprises an important arm of the innate antiviral defense system. The gamma-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus and the alpha-herpesviruses herpes simplex virus (HSV)-1 and HSV-2 have evolved an efficient mechanism to avoid APOBEC3 restriction by directly binding to APOBEC3B and facilitating its exclusion from the nuclear compartment. The only viral protein required for APOBEC3B relocalization is the large subunit of the ribonucleotide reductase (RNR).
View Article and Find Full Text PDFAPOBEC3B (A3B) is aberrantly overexpressed in a subset of breast cancers, where it associates with advanced disease, poor prognosis, and treatment resistance, yet the causes of A3B dysregulation in breast cancer remain unclear. Here, A3B mRNA and protein expression levels were quantified in different cell lines and breast tumors and related to cell cycle markers using RT-qPCR and multiplex immunofluorescence imaging. The inducibility of A3B expression during the cell cycle was additionally addressed after cell cycle synchronization with multiple methods.
View Article and Find Full Text PDFUnlabelled: The APOBEC3 family of DNA cytosine deaminases comprises an important arm of the innate antiviral defense system. The gamma-herpesviruses EBV and KSHV and the alpha-herpesviruses HSV-1 and HSV-2 have evolved an efficient mechanism to avoid APOBEC3 restriction by directly binding to APOBEC3B and facilitating its exclusion from the nuclear compartment. The only viral protein required for APOBEC3B relocalization is the large subunit of the ribonucleotide reductase (RNR).
View Article and Find Full Text PDFContext: Osteosarcoma is the most common primary solid malignancy of the bone, mainly affecting pediatric patients. The main clinical issues are chemoresistance and metastatic spread, leading to a survival rate stagnating around 60% for four decades.
Purpose: Here, we investigated the effect of simvastatin as adjuvant therapy on chemotherapy.
The first Tribbles protein was identified as critical for the coordination of morphogenesis in Drosophila melanogaster. Three mammalian homologs were subsequently identified, with a structure similar to classic serine/threonine kinases, but lacking crucial amino acids for the catalytic activity. Thereby, the very weak ATP affinity classifies TRIB proteins as pseudokinases.
View Article and Find Full Text PDFNext-generation sequencing has sparked the exploration of cancer genomes, with the aim of discovering the genetic etiology of the disease and proposing rationally designed therapeutic interventions. Driver gene alterations have been comprehensively charted, but the improvement of cancer patient management somewhat lags behind these basic breakthroughs. Recently, large-scale sequencing that focused on metastasis, the main cause of cancer-related deaths, has shed new light on the driving forces at work during disease progression, particularly in breast cancer.
View Article and Find Full Text PDFRapalogs have become standard-of-care in patients with metastatic breast, kidney, and neuroendocrine cancers. Nevertheless, tumor escape occurs after several months in most patients, highlighting the need to understand mechanisms of resistance. Using a panel of cancer cell lines, we show that rapalogs downregulate the putative protein kinase TRIB3 (tribbles pseudokinase 3).
View Article and Find Full Text PDFOsteosarcoma is the most prevalent primary bone malignancy in children and young adults. Resistance to chemotherapy remains a key challenge for effective treatment of patients with osteosarcoma. The aim of the present study was to investigate the preventive role of metallothionein-2A (MT2A) in response to cytotoxic effects of chemotherapy.
View Article and Find Full Text PDFBackground: Osteosarcoma is the most prevalent primary bone malignancy in children and young adults. These tumors are highly metastatic, leading to poor outcome. We previously demonstrated that Cysteine-rich protein 61 (CYR61/CCN1) expression level is correlated to osteosarcoma aggressiveness in preclinical model and in patient tumor samples.
View Article and Find Full Text PDF