Prostate cancer (PCa) is the most common cancer diagnosed in men worldwide and was the second leading cause of cancer-related deaths in US males in 2022. Prostate cancer also represents the second highest cancer mortality disparity between non-Hispanic blacks and whites. However, there is a relatively small number of prostate normal and cancer cell lines compared to other cancers.
View Article and Find Full Text PDFBreast cancer is one of the leading causes of mortality among women. The tumour microenvironment, consisting of host cells and extracellular matrix, has been increasingly studied for its interplay with cancer cells, and the resulting effect on tumour progression. While the breast is one of the most innervated organs in the body, the role of neurons, and specifically sensory neurons, has been understudied, mostly for technical reasons.
View Article and Find Full Text PDFProstate cancer (PCa) is the most common cancer diagnosed in men worldwide and the second leading cause of cancer-related deaths in US males in 2022. Prostate cancer also represents the second highest cancer mortality disparity between non-Hispanic blacks and whites. However, there is a relatively small number of prostate normal and cancer cell lines compared to other cancers.
View Article and Find Full Text PDFIn this protocol, we describe steps to design, fabricate and use the Device for Axon and Cancer cell Interaction Testing (DACIT) in 2D and in 3D. In the first section, we detail steps to generate the mask, the master and the smooth-on mold. Next, we describe the step-by-step protocol for fabricating the DACIT, loading sensory neurons and cancer cells in 2D or 3D.
View Article and Find Full Text PDFBreast cancer is one of the leading causes of mortality among women. The tumor microenvironment, consisting of host cells and extracellular matrix, has been increasingly studied for its interplay with cancer cells, and the resulting effect on tumor progression. While the breast is one of the most innervated organs in the body, the role of neurons, and specifically sensory neurons, has been understudied, mostly for technical reasons.
View Article and Find Full Text PDFIn pancreatic ductal adenocarcinoma (PDAC), the fibroblastic stroma constitutes most of the tumor mass and is remarkably devoid of functional blood vessels. This raises an unresolved question of how PDAC cells obtain essential metabolites and water-insoluble lipids. We have found a critical role for cancer-associated fibroblasts (CAFs) in obtaining and transferring lipids from blood-borne particles to PDAC cells via trogocytosis of CAF plasma membranes.
View Article and Find Full Text PDFInvasive and non-invasive cancer cells can invade together during cooperative invasion. However, the events leading to it, role of the epithelial-mesenchymal transition and the consequences this may have on metastasis are unknown. In this study, we demonstrate that the isogenic 4T1 and 67NR breast cancer cells sort from each other in 3D spheroids, followed by cooperative invasion.
View Article and Find Full Text PDFBackground: We recently reported on preferential deposition of bare fluorescent diamond particles FDP-NV-700/800nm (FDP-NV) in the liver following intravenous administration to rats. The pharmacokinetics of FDP-NV in that species indicated short residency in the circulation by rapid clearance by the liver. Retention of FDP-NV in the liver was not associated with any pathology.
View Article and Find Full Text PDFThe invasion of cancer cells from the primary tumor into the adjacent healthy tissues is an early step in metastasis. Invasive cancer cells pose a major clinical challenge because no efficient method exist for their elimination once their dissemination is underway. A better understanding of the mechanisms regulating cancer cell invasion may lead to the development of novel potent therapies.
View Article and Find Full Text PDFBackground: Cancer is a highly complex disease which involves the co-operation of tumor cells with multiple types of host cells and the extracellular matrix. Cancer studies which rely solely on static measurements of individual cell types are insufficient to dissect this complexity. In the last two decades, intravital microscopy has established itself as a powerful technique that can significantly improve our understanding of cancer by revealing the dynamic interactions governing cancer initiation, progression and treatment effects, in living animals.
View Article and Find Full Text PDFThe process of tumor cell invasion and metastasis includes assembly of invadopodia, protrusions capable of degrading the extracellular matrix (ECM). The effect of cell cycle progression on invadopodia has not been elucidated. In this study, by using invadopodia and cell cycle fluorescent markers, we show in 2D and 3D cultures, as well as , that breast carcinoma cells assemble invadopodia and invade into the surrounding ECM preferentially during the G1 phase.
View Article and Find Full Text PDFCancer cell migration is essential for metastasis, during which cancer cells move through the tumor and reach the blood vessels. , cancer cells are exposed to contact guidance and chemotactic cues. Depending on the strength of such cues, cells will migrate in a random or directed manner.
View Article and Find Full Text PDFInvadopodia are membrane protrusions dynamically assembled by invasive cancer cells in contact with the extracellular matrix (ECM). Invadopodia are enriched by the structural proteins actin and cortactin as well as metalloproteases such as MT1-MMP, whose function is to degrade the surrounding ECM. During metastasis, invadopodia are necessary for cancer cell intravasation and extravasation.
View Article and Find Full Text PDFCancer cell motility and invasion are key features of metastatic tumors. Both are highly linked to tumor microenvironmental parameters, such as collagen architecture or macrophage density. However, due to the genetic, epigenetic and microenvironmental heterogeneities, only a small portion of tumor cells in the primary tumor are motile and furthermore, only a small portion of those will metastasize.
View Article and Find Full Text PDFSTIM1 and STIM2 are endoplasmic reticulum Ca sensors that serve multi‐faceted roles in signal transduction in a wide variety of different cell types. In this issue of , Motiani define and characterize the ability of STIM1 to control cAMP generation in a new context, melanin production (Motiani , 2018), offering new insights into the physiological role of STIM1.
View Article and Find Full Text PDFThe production of Prostaglandin E (PGE) is elevated in human breast cancer cells. The abnormal expression of COX-2, which is involved in the synthesis of PGE, was recently reported as a critical determinant for invasiveness of human breast cancer cells. Autocrine and paracrine PGE-mediated stimulation of the PGE receptor EP4 transduces multiple signaling pathways leading to diverse patho-physiological effects, including tumor cell invasion and metastasis.
View Article and Find Full Text PDFNiche construction concept was originally defined in evolutionary biology as the continuous interplay between natural selection via environmental conditions and the modification of these conditions by the organism itself. Processes unraveling during cancer metastasis include construction of niches, which cancer cells use towards more efficient survival, transport into new environments and preparation of the remote sites for their arrival. Many elegant experiments were done lately illustrating, for example, the premetastatic niche construction, but there is practically no mathematical modeling done which would apply the framework.
View Article and Find Full Text PDFPodosomes and invadopodia (collectively known as invadosomes) are small, F-actin-rich protrusions that are located at points of cell-ECM contacts and endow cells with invasive capabilities. So far, they have been identified in human or murine immune (myelomonocytic), vascular and cancer cells. The overarching reason for studying invadosomes is their connection to human disease.
View Article and Find Full Text PDFWhile it has been established that a number of microenvironment components can affect the likelihood of metastasis, the link between microenvironment and tumor cell phenotypes is poorly understood. Here we have examined microenvironment control over two different tumor cell motility phenotypes required for metastasis. By high-resolution multiphoton microscopy of mammary carcinoma in mice, we detected two phenotypes of motile tumor cells, different in locomotion speed.
View Article and Find Full Text PDFInvadopodia are dynamic protrusions in motile tumor cells whose function is to degrade extracellular matrix so that cells can enter into new environments. Invadopodia are specifically identified by microscopy as proteolytic invasive protrusions containing TKS5 and cortactin. The increasing complexity in models for the study of invadopodia, including engineered 3D environments, explants, or animal models in vivo, entails a higher level of microenvironment complexity as well as cancer cell heterogeneity.
View Article and Find Full Text PDFThe analysis of cancer cell behavior in the primary tumor in living animals provides an opportunity to explore the process of invasion and intravasation in the complex microenvironment that is present in vivo. In this chapter, we describe the methods that we have developed for performing intravital imaging of mammary tumors. We provide procedures for generating tumors through injection of tumor cell lines, and multiphoton imaging using a skin-flap tumor dissection and a mammary imaging window.
View Article and Find Full Text PDFInvadopodia are proteolytic membrane protrusions formed by highly invasive cancer cells, commonly observed on substrate(s) mimicking extracellular matrix. Although invadopodia are proposed to have roles in cancer invasion and metastasis, direct evidence has not been available. We previously reported that neural Wiskott-Aldrich syndrome protein (N-WASP), a member of WASP family proteins that regulate reorganization of the actin cytoskeleton, is an essential component of invadopodia.
View Article and Find Full Text PDFCold Spring Harb Protoc
October 2011
Analysis of the individual steps in metastasis is crucial if insights at the molecular level are to be linked to the cell biology of cancer. A technical hurdle to achieving the analysis of the individual steps of metastasis is the fact that, at the gross level, tumors are heterogeneous in both animal models and patients. Human primary tumors show extensive variation in all properties ranging from growth and morphology of the tumor through tumor-cell density in the blood and formation and growth of metastases.
View Article and Find Full Text PDFAnalysis of the individual steps in metastasis is crucial if insights at the molecular level are to be linked to the cell biology of cancer. A technical hurdle to achieving the analysis of the individual steps of metastasis is the fact that, at the gross level, tumors are heterogeneous in both animal models and patients. Human primary tumors show extensive variation in all properties ranging from growth and morphology of the tumor through tumor-cell density in the blood and formation and growth of metastases.
View Article and Find Full Text PDFCharacterizing biological mechanisms dependent upon the interaction of many cell types in vivo requires both multiphoton microscope systems capable of expanding the number and types of fluorophores that can be imaged simultaneously while removing the wavelength and tunability restrictions of existing systems, and enhanced software for extracting critical cellular parameters from voluminous 4D data sets. We present a procedure for constructing a two-laser multiphoton microscope that extends the wavelength range of excitation light, expands the number of simultaneously usable fluorophores and markedly increases signal to noise via 'over-clocking' of detection. We also utilize a custom-written software plug-in that simplifies the quantitative tracking and analysis of 4D intravital image data.
View Article and Find Full Text PDF