Background: Social network interventions are an effective approach to promote physical activity. These interventions are traditionally designed using self-reported peer nomination network data to represent social connections. However, there is unexplored potential in communication data exchanged through web-based messaging apps or social platforms, given the availability of these data, the developments in artificial intelligence to analyze these data, and the shift of personal communication to the web sphere.
View Article and Find Full Text PDFPers Ubiquitous Comput
August 2020
Bluetooth (BT) data has been extensively used for recognizing social patterns and inferring social networks, as BT is widely present in everyday technological devices. However, even though collecting BT data is subject to random noise and may result in substantial measurement errors, there is an absence of rigorous procedures for validating the quality of the inferred BT social networks. This paper presents a methodology for inferring and validating BT-based social networks based on parameter optimization algorithm and social network analysis (SNA).
View Article and Find Full Text PDFBackground: Social network interventions targeted at children and adolescents can have a substantial effect on their health behaviors, including physical activity. However, designing successful social network interventions is a considerable research challenge. In this study, we rely on social network analysis and agent-based simulations to better understand and capitalize on the complex interplay of social networks and health behaviors.
View Article and Find Full Text PDF