The experimental measurement and modeling of liquid chemical agent spread and sorption on a porous substrate are described. Experimental results with the nerve agent O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate (VX) demonstrate that the wetted imprint volume increases, even after the sessile drop volume is exhausted. This indicates the wetted imprint is only partially saturated, and a multiphase flow problem formulation is needed to predict the VX fate in porous substrates.
View Article and Find Full Text PDFThe problem of primary and secondary spread of sessile droplets into a porous substrate was formulated and solved numerically. A continuum approach for liquid- and gas-phases was utilized. The governing equations were discretized by finite difference method and solutions for both phases are obtained by marching in time using the fourth-order Runge-Kutta integration algorithm.
View Article and Find Full Text PDF