C-Elastography (CE) is a new ultrasound technique that locally maps the non-linear elasticity of soft tissue using low-frequency (150-250 Hz) shear waves generated by the acoustic radiation force (ARF). CE is based on a recent finding that the magnitude of the ARF in an isotropic tissue-like solid is related linearly to a third-order modulus of elasticity, C, which is responsible for the coupling between deviatoric and volumetric constitutive behaviors. The main objective of the work described here was to examine the feasibility of using and performance of C-elastography in differentiating and characterizing soft tissue via a pilot study on ex vivo tissue and tissue-mimicking inclusions cast in a gelatin block.
View Article and Find Full Text PDFProc Math Phys Eng Sci
March 2019
In this study, we establish an inclusive paradigm for the homogenization of scalar wave motion in periodic media (including the source term) at finite frequencies and wavenumbers spanning the first Brillouin zone. We take the eigenvalue problem for the unit cell of periodicity as a point of departure, and we consider the projection of germane Bloch wave function onto a suitable eigenfunction as descriptor of effective wave motion. For generality the finite wavenumber, finite frequency homogenization is pursued in via second-order asymptotic expansion about the apexes of 'wavenumber quadrants' comprising the first Brillouin zone, at frequencies near given (acoustic or optical) dispersion branch.
View Article and Find Full Text PDFProc Math Phys Eng Sci
May 2018
When considering an effective, i.e. homogenized description of waves in periodic media that transcends the usual quasi-static approximation, there are generally two schools of thought: (i) the two-scale approach that is prevalent in mathematics and (ii) the Willis' homogenization framework that has been gaining popularity in engineering and physical sciences.
View Article and Find Full Text PDFProc Math Phys Eng Sci
July 2015
This study deciphers the topological sensitivity (TS) as a tool for the reconstruction and characterization of impenetrable anomalies in the high-frequency regime. It is assumed that the anomaly is simply connected and convex, and that the measurements of the scattered field are of the far-field type. In this setting, the formula for TS-which quantifies the perturbation of a cost functional due to a point-like impenetrable scatterer-is expressed as a pair of nested surface integrals: one taken over the boundary of a hidden obstacle, and the other over the measurement surface.
View Article and Find Full Text PDFPrompted by a recent finding that the magnitude of the acoustic radiation force (ARF) in isotropic tissue-like solids depends linearly on a particular third-order modulus of elasticity-hereon denoted by C, this study investigates the possibility of estimating C from the amplitude of the ARF-generated shear waves. The featured coefficient of nonlinear elasticity, which captures the incipient nonlinear interaction between the volumetric and deviatoric modes of deformation, has so far received only a limited attention in the context of soft tissues due to the fact that the latter are often approximated as (i) fluid-like when considering ultrasound waves, and (ii) incompressible under static deformations. On establishing the analytical and computational platform for the proposed sensing methodology, the study proceeds with applying the prototype technique toward estimating via ARF the third-order modulus C in a series of tissue-mimicking phantoms.
View Article and Find Full Text PDFBy means of the viscoelastodynamic model for a two-layer solid-fluid system and a detailed account of the locally induced acoustic radiation force, a rational analytical and computational framework is established for the viscoelastic characterization of thin tissues from high-frequency ultrasound (HFUS) measurements. For practical applications, the back-analysis is set up to interpret the frequency response function, signifying the tissue's axial displacement (captured by the imaging transducer) per squared voltage driving the 'pushing' transducer, as experimental input. On parametrizing the tissue's viscoelastic behavior in terms of the standard linear model, the proposed methodology is applied to a set of measurements performed on tissue-mimicking phantom constructs with thicknesses ranging from 0.
View Article and Find Full Text PDF