Glycolipids from Mycobacterium tuberculosis have a profound impact on the innate immune response of the host. Macrophage-inducible C-type lectin (Mincle) is a pattern-recognition receptor that has been shown to bind trehalose dimycolate (TDM) from the mycobacterium and instigate intracellular signalling in the immune cell. There are structural similarities between the structures of TDM and phosphatidyl inositol mannoside (PIM).
View Article and Find Full Text PDFOxidatively damaged DNA results from the attack of sugar and base moieties by reactive oxygen species (ROS), which are formed as byproducts of normal cell metabolism and during exposure to endogenous or exogenous chemical or physical agents. Guanine, having the lowest redox potential, is the DNA base the most susceptible to oxidation, yielding products such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2-6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). In DNA, 8-oxoG was shown to be mutagenic yielding GC to TA transversions upon incorporation of dAMP opposite this lesion by replicative DNA polymerases.
View Article and Find Full Text PDFTo characterize proteins that interact with single-stranded/double-stranded (ss/ds) DNA junctions in whole cell free extracts of Saccharomyces cerevisiae, we used [(32)P]-labeled photoreactive partial DNA duplexes containing a 3'-ss/ds-junction (3'-junction) or a 5'-ss/ds-junction (5'-junction). Identification of labeled proteins was achieved by MALDI-TOF mass spectrometry peptide mass fingerprinting and genetic analysis. In wild-type extract, one of the components of the Ddc1-Rad17-Mec3 complex, Ddc1, was found to be preferentially photocrosslinked at a 3'-junction.
View Article and Find Full Text PDFDNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap.
View Article and Find Full Text PDFMismatch-repair factors have a prominent role in surveying eukaryotic DNA-replication fidelity and in ensuring correct meiotic recombination. These functions depend on MutL-homolog heterodimers with Mlh1. In humans, MLH1 mutations underlie half of hereditary nonpolyposis colorectal cancers (HNPCCs).
View Article and Find Full Text PDFIn Saccharomyces cerevisiae, inactivation of base excision repair (BER) AP endonucleases (Apn1p and Apn2p) results in constitutive phosphorylation of Rad53p and delay in cell cycle progression at the G2/M transition. These data led us to investigate genetic interactions between Apn1p, Apn2p and DNA damage checkpoint proteins. The results show that mec1 sml1, rad53 sml1 and rad9 is synthetic lethal with apn1 apn2.
View Article and Find Full Text PDFTo characterize proteins that interact with base excision/single-strand interruption repair DNA intermediates in cell free extracts of Saccharomyces cerevisiae, we used a combination of photoaffinity labeling with the protein identification by MALDI-TOF-MS peptide mapping. Photoreactive analogue of dCTP, namely exo-N-[4-(4-azido-2,3,5,6,-tetrafluorobenzylidenehydrazinocarbonyl)-butylcarbamoyl]-2'-deoxycytidine-5'-triphosphate, and [(32)P]-labeled DNA duplex containing one nucleotide gap were used to generate nick-containing DNA with a photoreactive dCMP residue at the 3'-margin of the nick. This photoreactive DNA derivative was incubated with the yeast cell extract and after UV irradiation a number of proteins were labeled.
View Article and Find Full Text PDFHigh transcription is associated with genetic instability, notably increased spontaneous mutation rates, which is a phenomenon termed Transcription-Associated-Mutagenesis (TAM). In this study, we investigated TAM using the chromosomal CAN1 gene under the transcriptional control of two strong and inducible promoters (pGAL1 and pTET) in Saccharomyces cerevisiae. Both pTET- and pGAL1-driven high transcription at the CAN1 gene result in enhanced spontaneous mutation rates.
View Article and Find Full Text PDFThe Rad2/XPG family nuclease, Exo1, functions in a variety of DNA repair pathways. During meiosis, Exo1 promotes crossover recombination and thereby facilitates chromosome segregation at the first division. Meiotic recombination is initiated by programmed DNA double-strand breaks (DSBs).
View Article and Find Full Text PDF7,8-Dihydro-8-oxoguanine (8-oxoG) is an abundant and mutagenic DNA lesion. In Saccharomyces cerevisiae, the 8-oxoG DNA N-glycosylase (Ogg1) acts as the primary defense against 8-oxoG. Here, we present evidence for cooperation between Rad18-Rad6-dependent monoubiquitylation of PCNA at K164, the damage-tolerant DNA polymerase eta and the mismatch repair system (MMR) to prevent 8-oxoG-induced mutagenesis.
View Article and Find Full Text PDFMlh1 is an essential factor of mismatch repair (MMR) and meiotic recombination. It interacts through its C-terminal region with MutL homologs and proteins involved in DNA repair and replication. In this study, we identified the site of yeast Mlh1 critical for the interaction with Exo1, Ntg2, and Sgs1 proteins, designated as site S2 by reference to the Mlh1/Pms1 heterodimerization site S1.
View Article and Find Full Text PDFBackground: (5R) and (5S) diastereomers of 1-[2-deoxy-beta-D-erythro-pentofuranosyl]-5-hydroxyhydantoin (5-OH-dHyd) and 1-[2-deoxy-beta-D-erythro-pentofuranosyl]-5-hydroxy-5-methylhydantoin (5-OH-5-Me-dHyd) are major oxidation products of 2'-deoxycytidine and thymidine respectively. If not repaired, when present in cellular DNA, these base lesions may be processed by DNA polymerases that induce mutagenic and cell lethality processes.
Methods: Synthetic oligonucleotides that contained a unique 5-hydroxyhydantoin (5-OH-Hyd) or 5-hydroxy-5-methylhydantoin (5-OH-5-Me-Hyd) nucleobase were used as probes for repair studies involving several E.
Cadmium (Cd(2+)) is a ubiquitous environmental pollutant and human carcinogen. The molecular basis of its toxicity remains unclear. Here, to identify the landscape of genes and cell functions involved in cadmium resistance, we have screened the Saccharomyces cerevisiae deletion collection for mutants sensitive to cadmium exposure.
View Article and Find Full Text PDFIn this report we show that human DNA Topoisomerase I (Top1) forms DNA-protein adducts with nicked and gapped DNA structures lacking a conventional Top1 cleavage site. The radioactively labeled crosslinking products were identified by SDS-gel electrophoresis. The chemical structure of the groups at 5' or 3' end of the nick does not have an effect on the formation of these covalent adducts.
View Article and Find Full Text PDFReplication forks stall at DNA lesions or as a result of an unfavorable replicative environment. These fork stalling events have been associated with recombination and gross chromosomal rearrangements. Recombination and fork bypass pathways are the mechanisms accountable for restart of stalled forks.
View Article and Find Full Text PDFMethods Enzymol
February 2007
Apurinic/apyrimidinic (AP) sites are expected to be one of the most frequent endogenous lesions in DNA. AP sites are potentially lethal and mutagenic. Data shows that the simultaneous inactivation of two AP endonucleases (Apn1 and Apn2) and of the nuclease Rad1-Rad10 causes cell death in Saccharomyces cerevisiae.
View Article and Find Full Text PDFThe aim of the present study was to identify proteins that bind nicked DNA intermediates formed in the course of base excision repair (BER) in cell free extracts of Saccharomyces cerevisiae. In mammalian cells, nicks in DNA are targets of proteins such as PARP-1 or XRCC1 that have no homologues in yeast. One of the most promising methodologies to trap proteins that interact with damaged DNA lies in using a photocrosslinking technique with photoactivable dNTP analogues such as exo-N-{2-[N-(4-azido-2,5-difluoro-3-chloropyridine-6-yl)-3-aminopropionyl]-aminoethyl}-2'-deoxycytidine-5'-triphosphate (FAP-dCTP) for enzymatic synthesis of DNA probes with a photoreactive dNMP residue at the 3'-margin of a nick.
View Article and Find Full Text PDFWe identified a viable allele (dut1-1) of the DUT1 gene that encodes the dUTPase activity in Saccharomyces cerevisiae. The Dut1-1 protein possesses a single amino acid substitution (Gly82Ser) in a conserved motif nearby the active site and exhibits a greatly reduced dUTPase activity. The dut1-1 single mutant exhibits growth delay and cell cycle abnormalities and shows a strong spontaneous mutator phenotype.
View Article and Find Full Text PDFWe study diffusion of charged nanoparticles in a temperature gradient and derive the corresponding Ludwig-Soret transport coefficient. Charge effects are found to enhance thermodiffusion by up to 2 orders of magnitude. We show that the inverse Soret coefficient 1/S(T) is a linear function of the colloid density n; the proportionality factor, or second virial coefficient, varies algebraically with inverse salinity, n0(-alpha); the precise value of the exponent alpha depends on the ratio of particle size and Debye length.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2005
UVA (320-400 nm) radiation constitutes >90% of the environmentally relevant solar UV radiation, and it has been proposed to have a role in skin cancer and aging. Because of the popularity of UVA tanning beds and prolonged periods of sunbathing, the potential deleterious effect of UVA has emerged as a source of concern for public health. Although generally accepted, the impact of DNA damage on the cytotoxic, mutagenic, and carcinogenic effect of UVA radiation remains unclear.
View Article and Find Full Text PDFRepair of chemically modified bases in DNA is accomplished through base excision repair (BER). This pathway is initiated by a specific DNA glycosylase that recognizes and excises the altered base to yield an abasic (AP) site. After cleavage of the AP site by APE1, repair proceeds through re-synthesis and ligation steps.
View Article and Find Full Text PDFTo improve the analyses of a form of oxidative DNA damage, 8-hydroxyguanine (8-OH-Gua), we treated isolated DNA with formamidopyrimidine DNA glycosylase (Fpg) and analyzed the released 8-OH-Gua by using a high-performance liquid chromatography system equipped with an electrochemical detector (HPLC-ECD). The human lung carcinoma cells (A549) and human keratinocyte (HaCaT) were irradiated with gamma-rays. After the isolated DNA was treated with the Fpg protein, we analyzed the released 8-OH-Gua by using an HPLC-ECD.
View Article and Find Full Text PDF7,8-dihydro-8-oxoguanine (8-oxoG) is an abundant and mutagenic lesion produced in DNA exposed to free radicals and reactive oxygen species. In Saccharomyces cerevisiae, the OGG1 gene encodes the 8-oxoG DNA N-glycosylase/AP lyase (Ogg1), which is the functional homologue of the bacterial Fpg. Ogg1-deficient strains are spontaneous mutators that accumulate GC to TA transversions due to unrepaired 8-oxoG in DNA.
View Article and Find Full Text PDFFormamidopyrimidine-DNA glycosylase (Fpg) is a DNA repair enzyme that excises oxidized purines such as 7,8-dihydro-8-oxoguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) from damaged DNA. Here, we report the crystal structure of the Fpg protein from Lactococcus lactis (LlFpg) bound to a carbocyclic FapydG (cFapydG)-containing DNA. The structure reveals that Fpg stabilizes the cFapydG nucleoside into an extrahelical conformation inside its substrate binding pocket.
View Article and Find Full Text PDF